reactor: Removal of double spaces
This commit is contained in:
parent
ce92e1d649
commit
13f62a50eb
64 changed files with 550 additions and 546 deletions
|
@ -43,7 +43,7 @@ def toSMPlusH : MSSMCharges.Charges ≃ (Fin 18 ⊕ Fin 2 → ℚ) :=
|
|||
@[simps!]
|
||||
def splitSMPlusH : (Fin 18 ⊕ Fin 2 → ℚ) ≃ (Fin 18 → ℚ) × (Fin 2 → ℚ) where
|
||||
toFun f := (f ∘ Sum.inl , f ∘ Sum.inr)
|
||||
invFun f := Sum.elim f.1 f.2
|
||||
invFun f := Sum.elim f.1 f.2
|
||||
left_inv f := Sum.elim_comp_inl_inr f
|
||||
right_inv _ := rfl
|
||||
|
||||
|
@ -107,7 +107,7 @@ def Hu : MSSMCharges.Charges →ₗ[ℚ] ℚ where
|
|||
map_smul' _ _ := by rfl
|
||||
|
||||
lemma charges_eq_toSpecies_eq (S T : MSSMCharges.Charges) :
|
||||
S = T ↔ (∀ i, toSMSpecies i S = toSMSpecies i T) ∧ Hd S = Hd T ∧ Hu S = Hu T := by
|
||||
S = T ↔ (∀ i, toSMSpecies i S = toSMSpecies i T) ∧ Hd S = Hd T ∧ Hu S = Hu T := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
rw [h]
|
||||
|
@ -159,7 +159,7 @@ def accGrav : MSSMCharges.Charges →ₗ[ℚ] ℚ where
|
|||
|
||||
/-- Extensionality lemma for `accGrav`. -/
|
||||
lemma accGrav_ext {S T : MSSMCharges.Charges}
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i)
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i)
|
||||
(hd : Hd S = Hd T) (hu : Hu S = Hu T) :
|
||||
accGrav S = accGrav T := by
|
||||
simp only [accGrav, MSSMSpecies_numberCharges, toSMSpecies_apply, Fin.isValue,
|
||||
|
@ -192,7 +192,7 @@ def accSU2 : MSSMCharges.Charges →ₗ[ℚ] ℚ where
|
|||
|
||||
/-- Extensionality lemma for `accSU2`. -/
|
||||
lemma accSU2_ext {S T : MSSMCharges.Charges}
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i)
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i)
|
||||
(hd : Hd S = Hd T) (hu : Hu S = Hu T) :
|
||||
accSU2 S = accSU2 T := by
|
||||
simp only [accSU2, MSSMSpecies_numberCharges, toSMSpecies_apply, Fin.isValue,
|
||||
|
@ -224,7 +224,7 @@ def accSU3 : MSSMCharges.Charges →ₗ[ℚ] ℚ where
|
|||
|
||||
/-- Extensionality lemma for `accSU3`. -/
|
||||
lemma accSU3_ext {S T : MSSMCharges.Charges}
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i) :
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i) :
|
||||
accSU3 S = accSU3 T := by
|
||||
simp only [accSU3, MSSMSpecies_numberCharges, toSMSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
||||
AddHom.coe_mk]
|
||||
|
@ -256,7 +256,7 @@ def accYY : MSSMCharges.Charges →ₗ[ℚ] ℚ where
|
|||
|
||||
/-- Extensionality lemma for `accGrav`. -/
|
||||
lemma accYY_ext {S T : MSSMCharges.Charges}
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i)
|
||||
(hj : ∀ (j : Fin 6), ∑ i, (toSMSpecies j) S i = ∑ i, (toSMSpecies j) T i)
|
||||
(hd : Hd S = Hd T) (hu : Hu S = Hu T) :
|
||||
accYY S = accYY T := by
|
||||
simp only [accYY, MSSMSpecies_numberCharges, toSMSpecies_apply, Fin.isValue,
|
||||
|
@ -269,9 +269,9 @@ lemma accYY_ext {S T : MSSMCharges.Charges}
|
|||
|
||||
/-- The symmetric bilinear function used to define the quadratic ACC. -/
|
||||
@[simps!]
|
||||
def quadBiLin : BiLinearSymm MSSMCharges.Charges := BiLinearSymm.mk₂ (
|
||||
fun (S, T) => ∑ i, (Q S i * Q T i + (- 2) * (U S i * U T i) +
|
||||
D S i * D T i + (- 1) * (L S i * L T i) + E S i * E T i) +
|
||||
def quadBiLin : BiLinearSymm MSSMCharges.Charges := BiLinearSymm.mk₂ (
|
||||
fun (S, T) => ∑ i, (Q S i * Q T i + (- 2) * (U S i * U T i) +
|
||||
D S i * D T i + (- 1) * (L S i * L T i) + E S i * E T i) +
|
||||
(- Hd S * Hd T + Hu S * Hu T))
|
||||
(by
|
||||
intro a S T
|
||||
|
@ -346,7 +346,7 @@ def cubeTriLinToFun
|
|||
+ (2 * Hd S.1 * Hd S.2.1 * Hd S.2.2
|
||||
+ 2 * Hu S.1 * Hu S.2.1 * Hu S.2.2)
|
||||
|
||||
lemma cubeTriLinToFun_map_smul₁ (a : ℚ) (S T R : MSSMCharges.Charges) :
|
||||
lemma cubeTriLinToFun_map_smul₁ (a : ℚ) (S T R : MSSMCharges.Charges) :
|
||||
cubeTriLinToFun (a • S, T, R) = a * cubeTriLinToFun (S, T, R) := by
|
||||
simp only [cubeTriLinToFun]
|
||||
rw [mul_add]
|
||||
|
@ -366,7 +366,7 @@ lemma cubeTriLinToFun_map_add₁ (S T R L : MSSMCharges.Charges) :
|
|||
rw [add_assoc, ← add_assoc (2 * Hd S * Hd R * Hd L + 2 * Hu S * Hu R * Hu L) _ _]
|
||||
rw [add_comm (2 * Hd S * Hd R * Hd L + 2 * Hu S * Hu R * Hu L) _]
|
||||
rw [add_assoc]
|
||||
rw [← add_assoc _ _ (2 * Hd S * Hd R * Hd L + 2 * Hu S * Hu R * Hu L +
|
||||
rw [← add_assoc _ _ (2 * Hd S * Hd R * Hd L + 2 * Hu S * Hu R * Hu L +
|
||||
(2 * Hd T * Hd R * Hd L + 2 * Hu T * Hu R * Hu L))]
|
||||
congr 1
|
||||
rw [← Finset.sum_add_distrib]
|
||||
|
@ -415,7 +415,7 @@ def accCube : HomogeneousCubic MSSMCharges.Charges := cubeTriLin.toCubic
|
|||
lemma accCube_ext {S T : MSSMCharges.Charges}
|
||||
(h : ∀ j, ∑ i, ((fun a => a^3) ∘ toSMSpecies j S) i =
|
||||
∑ i, ((fun a => a^3) ∘ toSMSpecies j T) i)
|
||||
(hd : Hd S = Hd T) (hu : Hu S = Hu T) :
|
||||
(hd : Hd S = Hd T) (hu : Hu S = Hu T) :
|
||||
accCube S = accCube T := by
|
||||
simp only [HomogeneousCubic, accCube, cubeTriLin, TriLinearSymm.toCubic_apply,
|
||||
TriLinearSymm.mk₃_toFun_apply_apply, cubeTriLinToFun]
|
||||
|
@ -452,7 +452,7 @@ def MSSMACC : ACCSystem where
|
|||
namespace MSSMACC
|
||||
open MSSMCharges
|
||||
|
||||
lemma quadSol (S : MSSMACC.QuadSols) : accQuad S.val = 0 := by
|
||||
lemma quadSol (S : MSSMACC.QuadSols) : accQuad S.val = 0 := by
|
||||
have hS := S.quadSol
|
||||
simp only [MSSMACC_numberQuadratic, HomogeneousQuadratic, MSSMACC_quadraticACCs] at hS
|
||||
exact hS 0
|
||||
|
@ -516,9 +516,9 @@ lemma AnomalyFreeMk''_val (S : MSSMACC.QuadSols)
|
|||
|
||||
/-- The dot product on the vector space of charges. -/
|
||||
@[simps!]
|
||||
def dot : BiLinearSymm MSSMCharges.Charges := BiLinearSymm.mk₂
|
||||
(fun S => ∑ i, (Q S.1 i * Q S.2 i + U S.1 i * U S.2 i +
|
||||
D S.1 i * D S.2 i + L S.1 i * L S.2 i + E S.1 i * E S.2 i
|
||||
def dot : BiLinearSymm MSSMCharges.Charges := BiLinearSymm.mk₂
|
||||
(fun S => ∑ i, (Q S.1 i * Q S.2 i + U S.1 i * U S.2 i +
|
||||
D S.1 i * D S.2 i + L S.1 i * L S.2 i + E S.1 i * E S.2 i
|
||||
+ N S.1 i * N S.2 i) + Hd S.1 * Hd S.2 + Hu S.1 * Hu S.2)
|
||||
(by
|
||||
intro a S T
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue