reactor: Removal of double spaces
This commit is contained in:
parent
ce92e1d649
commit
13f62a50eb
64 changed files with 550 additions and 546 deletions
|
@ -158,7 +158,7 @@ lemma cube_proj_proj_B₃ (T : MSSMACC.LinSols) :
|
|||
lemma cube_proj_proj_self (T : MSSMACC.Sols) :
|
||||
cubeTriLin (proj T.1.1).val (proj T.1.1).val T.val =
|
||||
2 * dot Y₃.val B₃.val *
|
||||
((dot B₃.val T.val - dot Y₃.val T.val) * cubeTriLin T.val T.val Y₃.val +
|
||||
((dot B₃.val T.val - dot Y₃.val T.val) * cubeTriLin T.val T.val Y₃.val +
|
||||
( dot Y₃.val T.val- 2 * dot B₃.val T.val) * cubeTriLin T.val T.val B₃.val) := by
|
||||
rw [proj_val]
|
||||
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
|
||||
|
@ -168,13 +168,13 @@ lemma cube_proj_proj_self (T : MSSMACC.Sols) :
|
|||
repeat rw [cubeTriLin.map_add₂]
|
||||
repeat rw [cubeTriLin.map_smul₂]
|
||||
erw [T.cubicSol]
|
||||
rw [cubeTriLin.swap₁ Y₃.val T.val T.val, cubeTriLin.swap₂ T.val Y₃.val T.val]
|
||||
rw [cubeTriLin.swap₁ B₃.val T.val T.val, cubeTriLin.swap₂ T.val B₃.val T.val]
|
||||
rw [cubeTriLin.swap₁ Y₃.val T.val T.val, cubeTriLin.swap₂ T.val Y₃.val T.val]
|
||||
rw [cubeTriLin.swap₁ B₃.val T.val T.val, cubeTriLin.swap₂ T.val B₃.val T.val]
|
||||
ring
|
||||
|
||||
lemma cube_proj (T : MSSMACC.Sols) :
|
||||
cubeTriLin (proj T.1.1).val (proj T.1.1).val (proj T.1.1).val =
|
||||
3 * dot Y₃.val B₃.val ^ 2 *
|
||||
3 * dot Y₃.val B₃.val ^ 2 *
|
||||
((dot B₃.val T.val - dot Y₃.val T.val) * cubeTriLin T.val T.val Y₃.val +
|
||||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * cubeTriLin T.val T.val B₃.val) := by
|
||||
nth_rewrite 3 [proj_val]
|
||||
|
|
|
@ -42,7 +42,7 @@ lemma planeY₃B₃_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ℚ) :
|
|||
rw [smul_add, smul_add]
|
||||
rw [smul_smul, smul_smul, smul_smul]
|
||||
|
||||
lemma planeY₃B₃_eq (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (h : a = a' ∧ b = b' ∧ c = c') :
|
||||
lemma planeY₃B₃_eq (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (h : a = a' ∧ b = b' ∧ c = c') :
|
||||
(planeY₃B₃ R a b c) = (planeY₃B₃ R a' b' c') := by
|
||||
rw [h.1, h.2.1, h.2.2]
|
||||
|
||||
|
@ -82,7 +82,7 @@ lemma planeY₃B₃_val_eq' (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (hR' : R
|
|||
have h2 := congrArg (fun S => S i) h1i
|
||||
change _ = 0 at h2
|
||||
simp [HSMul.hSMul] at h2
|
||||
have hc : c + -c' = 0 := by
|
||||
have hc : c + -c' = 0 := by
|
||||
cases h2 <;> rename_i h2
|
||||
exact h2
|
||||
exact (hi h2).elim
|
||||
|
@ -105,8 +105,8 @@ lemma planeY₃B₃_quad (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
|||
|
||||
lemma planeY₃B₃_cubic (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
||||
accCube (planeY₃B₃ R a b c).val = c ^ 2 *
|
||||
(3 * a * cubeTriLin R.val R.val Y₃.val
|
||||
+ 3 * b * cubeTriLin R.val R.val B₃.val + c * cubeTriLin R.val R.val R.val) := by
|
||||
(3 * a * cubeTriLin R.val R.val Y₃.val
|
||||
+ 3 * b * cubeTriLin R.val R.val B₃.val + c * cubeTriLin R.val R.val R.val) := by
|
||||
rw [planeY₃B₃_val]
|
||||
erw [TriLinearSymm.toCubic_add]
|
||||
erw [lineY₃B₃Charges_cubic]
|
||||
|
@ -178,7 +178,7 @@ def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
|||
MSSMACC.LinSols :=
|
||||
planeY₃B₃ R
|
||||
(a₂ * cubeTriLin R.val R.val R.val - 3 * a₃ * cubeTriLin R.val R.val B₃.val)
|
||||
(3 * a₃ * cubeTriLin R.val R.val Y₃.val - a₁ * cubeTriLin R.val R.val R.val)
|
||||
(3 * a₃ * cubeTriLin R.val R.val Y₃.val - a₁ * cubeTriLin R.val R.val R.val)
|
||||
(3 * (a₁ * cubeTriLin R.val R.val B₃.val - a₂ * cubeTriLin R.val R.val Y₃.val))
|
||||
|
||||
lemma lineCube_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ℚ) :
|
||||
|
@ -205,7 +205,7 @@ lemma lineCube_quad (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
|||
|
||||
section proj
|
||||
|
||||
lemma α₃_proj (T : MSSMACC.Sols) : α₃ (proj T.1.1) =
|
||||
lemma α₃_proj (T : MSSMACC.Sols) : α₃ (proj T.1.1) =
|
||||
6 * dot Y₃.val B₃.val ^ 3 * (
|
||||
cubeTriLin T.val T.val Y₃.val * quadBiLin B₃.val T.val -
|
||||
cubeTriLin T.val T.val B₃.val * quadBiLin Y₃.val T.val) := by
|
||||
|
@ -214,13 +214,13 @@ lemma α₃_proj (T : MSSMACC.Sols) : α₃ (proj T.1.1) =
|
|||
ring
|
||||
|
||||
lemma α₂_proj (T : MSSMACC.Sols) : α₂ (proj T.1.1) =
|
||||
- α₃ (proj T.1.1) * (dot Y₃.val T.val - 2 * dot B₃.val T.val) := by
|
||||
- α₃ (proj T.1.1) * (dot Y₃.val T.val - 2 * dot B₃.val T.val) := by
|
||||
rw [α₃_proj, α₂]
|
||||
rw [cube_proj_proj_Y₃, quad_Y₃_proj, quad_proj, cube_proj]
|
||||
ring
|
||||
|
||||
lemma α₁_proj (T : MSSMACC.Sols) : α₁ (proj T.1.1) =
|
||||
- α₃ (proj T.1.1) * (dot B₃.val T.val - dot Y₃.val T.val) := by
|
||||
- α₃ (proj T.1.1) * (dot B₃.val T.val - dot Y₃.val T.val) := by
|
||||
rw [α₃_proj, α₁]
|
||||
rw [cube_proj_proj_B₃, quad_B₃_proj, quad_proj, cube_proj]
|
||||
ring
|
||||
|
|
|
@ -146,7 +146,7 @@ def InCubeSolProp (R : MSSMACC.Sols) : Prop :=
|
|||
/-- A rational which has two properties. It is zero for a solution `T` if and only if
|
||||
that solution satisfies `inCubeSolProp`. It appears in the definition of `inLineEqProj`. -/
|
||||
def cubicCoeff (T : MSSMACC.Sols) : ℚ :=
|
||||
3 * (dot Y₃.val B₃.val) ^ 3 * (cubeTriLin T.val T.val Y₃.val ^ 2 +
|
||||
3 * (dot Y₃.val B₃.val) ^ 3 * (cubeTriLin T.val T.val Y₃.val ^ 2 +
|
||||
cubeTriLin T.val T.val B₃.val ^ 2 )
|
||||
|
||||
lemma inCubeSolProp_iff_cubicCoeff_zero (T : MSSMACC.Sols) :
|
||||
|
@ -243,7 +243,7 @@ def toSolNSProj (T : MSSMACC.Sols) : MSSMACC.AnomalyFreePerp × ℚ × ℚ ×
|
|||
lemma toSolNS_proj (T : NotInLineEqSol) : toSolNS (toSolNSProj T.val) = T.val := by
|
||||
apply ACCSystem.Sols.ext
|
||||
rw [toSolNS, toSolNSProj]
|
||||
change (lineEqCoeff T.val)⁻¹ • (toSolNSQuad _).1.1 = _
|
||||
change (lineEqCoeff T.val)⁻¹ • (toSolNSQuad _).1.1 = _
|
||||
rw [toSolNSQuad_eq_planeY₃B₃_on_α]
|
||||
rw [planeY₃B₃_val]
|
||||
rw [Y₃_plus_B₃_plus_proj]
|
||||
|
@ -254,7 +254,7 @@ lemma toSolNS_proj (T : NotInLineEqSol) : toSolNS (toSolNSProj T.val) = T.val :=
|
|||
rw [lineEqCoeff]
|
||||
ring
|
||||
rw [h1]
|
||||
have h1 := (lineEqPropSol_iff_lineEqCoeff_zero T.val).mpr.mt T.prop
|
||||
have h1 := (lineEqPropSol_iff_lineEqCoeff_zero T.val).mpr.mt T.prop
|
||||
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel h1]
|
||||
simp
|
||||
|
||||
|
@ -302,7 +302,7 @@ lemma inLineEqToSol_proj (T : InLineEqSol) : inLineEqToSol (inLineEqProj T) = T.
|
|||
simp
|
||||
|
||||
/-- Given a element of `inQuad × ℚ × ℚ × ℚ`, a solution to the ACCs. -/
|
||||
def inQuadToSol : InQuad × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a₁, a₂, a₃) =>
|
||||
def inQuadToSol : InQuad × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a₁, a₂, a₃) =>
|
||||
AnomalyFreeMk' (lineCube R.val.val a₁ a₂ a₃)
|
||||
(by
|
||||
erw [planeY₃B₃_quad]
|
||||
|
@ -391,8 +391,8 @@ lemma inQuadCubeToSol_proj (T : InQuadCubeSol) :
|
|||
|
||||
/-- Given an element of `MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` a solution. We will
|
||||
show that this map is a surjection. -/
|
||||
def toSol : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, b, c) =>
|
||||
if h₃ : LineEqProp R ∧ InQuadProp R ∧ InCubeProp R then
|
||||
def toSol : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, b, c) =>
|
||||
if h₃ : LineEqProp R ∧ InQuadProp R ∧ InCubeProp R then
|
||||
inQuadCubeToSol (⟨⟨⟨R, h₃.1⟩, h₃.2.1⟩, h₃.2.2⟩, a, b, c)
|
||||
else
|
||||
if h₂ : LineEqProp R ∧ InQuadProp R then
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue