reactor: Removal of double spaces
This commit is contained in:
parent
ce92e1d649
commit
13f62a50eb
64 changed files with 550 additions and 546 deletions
|
@ -17,7 +17,7 @@ and its action on the MSSM.
|
|||
universe v u
|
||||
|
||||
open Nat
|
||||
open Finset
|
||||
open Finset
|
||||
|
||||
namespace MSSM
|
||||
|
||||
|
@ -30,7 +30,7 @@ open BigOperators
|
|||
def PermGroup := Fin 6 → Equiv.Perm (Fin 3)
|
||||
|
||||
@[simp]
|
||||
instance : Group PermGroup := Pi.group
|
||||
instance : Group PermGroup := Pi.group
|
||||
|
||||
/-- The image of an element of `permGroup` under the representation on charges. -/
|
||||
@[simps!]
|
||||
|
@ -65,7 +65,7 @@ def repCharges : Representation ℚ PermGroup (MSSMCharges).Charges where
|
|||
apply LinearMap.ext
|
||||
intro S
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||||
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||||
intro i
|
||||
simp only [ Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
|
||||
rw [chargeMap_toSpecies, chargeMap_toSpecies]
|
||||
|
@ -76,7 +76,7 @@ def repCharges : Representation ℚ PermGroup (MSSMCharges).Charges where
|
|||
apply LinearMap.ext
|
||||
intro S
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||||
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
|
||||
intro i
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
rfl
|
||||
|
@ -91,46 +91,46 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup) (S : MSSMCharges.Charges
|
|||
rw [repCharges_toSMSpecies]
|
||||
exact Equiv.sum_comp (f⁻¹ j) ((fun a => a ^ m) ∘ (toSMSpecies j) S)
|
||||
|
||||
lemma Hd_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma Hd_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
Hd (repCharges f S) = Hd S := rfl
|
||||
|
||||
lemma Hu_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma Hu_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
Hu (repCharges f S) = Hu S := rfl
|
||||
|
||||
lemma accGrav_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma accGrav_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
accGrav (repCharges f S) = accGrav S :=
|
||||
accGrav_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
(Hd_invariant f S)
|
||||
(Hu_invariant f S)
|
||||
|
||||
lemma accSU2_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma accSU2_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
accSU2 (repCharges f S) = accSU2 S :=
|
||||
accSU2_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
(Hd_invariant f S)
|
||||
(Hu_invariant f S)
|
||||
|
||||
lemma accSU3_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma accSU3_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
accSU3 (repCharges f S) = accSU3 S :=
|
||||
accSU3_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
lemma accYY_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma accYY_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
accYY (repCharges f S) = accYY S :=
|
||||
accYY_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
(Hd_invariant f S)
|
||||
(Hu_invariant f S)
|
||||
|
||||
lemma accQuad_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma accQuad_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
accQuad (repCharges f S) = accQuad S :=
|
||||
accQuad_ext
|
||||
(toSpecies_sum_invariant 2 f S)
|
||||
(Hd_invariant f S)
|
||||
(Hu_invariant f S)
|
||||
|
||||
lemma accCube_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
lemma accCube_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
|
||||
accCube (repCharges f S) = accCube S :=
|
||||
accCube_ext
|
||||
(fun j => toSpecies_sum_invariant 3 f S j)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue