reactor: Removal of double spaces
This commit is contained in:
parent
ce92e1d649
commit
13f62a50eb
64 changed files with 550 additions and 546 deletions
|
@ -34,7 +34,7 @@ open BigOperators
|
|||
variable {n : ℕ}
|
||||
open VectorLikeEvenPlane
|
||||
|
||||
/-- A property on `LinSols`, satisfied if every point on the line between the two planes
|
||||
/-- A property on `LinSols`, satisfied if every point on the line between the two planes
|
||||
in the basis through that point is in the cubic. -/
|
||||
def LineInCubic (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
|
||||
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = Pa g f) (a b : ℚ) ,
|
||||
|
@ -61,18 +61,18 @@ lemma lineInCubic_expand {S : (PureU1 (2 * n.succ)).LinSols} (h : LineInCubic S)
|
|||
then `accCubeTriLinSymm.toFun (P g, P g, P! f) = 0`.
|
||||
-/
|
||||
lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n.succ)).LinSols} (h : LineInCubic S) :
|
||||
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = P g + P! f),
|
||||
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = P g + P! f),
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
|
||||
intro g f hS
|
||||
linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1) -
|
||||
(lineInCubic_expand h g f hS 1 2) / 6
|
||||
|
||||
/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/
|
||||
/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/
|
||||
def LineInCubicPerm (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
|
||||
∀ (M : (FamilyPermutations (2 * n.succ)).group ),
|
||||
LineInCubic ((FamilyPermutations (2 * n.succ)).linSolRep M S)
|
||||
|
||||
/-- If `lineInCubicPerm S` then `lineInCubic S`. -/
|
||||
/-- If `lineInCubicPerm S` then `lineInCubic S`. -/
|
||||
lemma lineInCubicPerm_self {S : (PureU1 (2 * n.succ)).LinSols}
|
||||
(hS : LineInCubicPerm S) : LineInCubic S := hS 1
|
||||
|
||||
|
@ -94,7 +94,7 @@ lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ)).LinSols}
|
|||
(S.val (δ!₂ j) - S.val (δ!₁ j))
|
||||
* accCubeTriLinSymm (P g) (P g) (basis!AsCharges j) = 0 := by
|
||||
intro j g f h
|
||||
let S' := (FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j)) S
|
||||
let S' := (FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j)) S
|
||||
have hSS' : ((FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j))) S = S' := rfl
|
||||
obtain ⟨g', f', hall⟩ := span_basis_swap! j hSS' g f h
|
||||
have h1 := line_in_cubic_P_P_P! (lineInCubicPerm_self LIC) g f h
|
||||
|
@ -106,21 +106,21 @@ lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ)).LinSols}
|
|||
|
||||
lemma P_P_P!_accCube' {S : (PureU1 (2 * n.succ.succ )).LinSols}
|
||||
(f : Fin n.succ.succ → ℚ) (g : Fin n.succ → ℚ) (hS : S.val = Pa f g) :
|
||||
accCubeTriLinSymm (P f) (P f) (basis!AsCharges (Fin.last n)) =
|
||||
accCubeTriLinSymm (P f) (P f) (basis!AsCharges (Fin.last n)) =
|
||||
- (S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) * (2 * S.val δ!₄ +
|
||||
S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) := by
|
||||
rw [P_P_P!_accCube f (Fin.last n)]
|
||||
S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) := by
|
||||
rw [P_P_P!_accCube f (Fin.last n)]
|
||||
have h1 := Pa_δ!₄ f g
|
||||
have h2 := Pa_δ!₁ f g (Fin.last n)
|
||||
have h3 := Pa_δ!₂ f g (Fin.last n)
|
||||
simp at h1 h2 h3
|
||||
have hl : f (Fin.succ (Fin.last (n ))) = - Pa f g δ!₄ := by
|
||||
have hl : f (Fin.succ (Fin.last (n ))) = - Pa f g δ!₄ := by
|
||||
simp_all only [Fin.succ_last, neg_neg]
|
||||
erw [hl] at h2
|
||||
have hg : g (Fin.last n) = Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄ := by
|
||||
have hg : g (Fin.last n) = Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄ := by
|
||||
linear_combination -(1 * h2)
|
||||
have hll : f (Fin.castSucc (Fin.last (n ))) =
|
||||
- (Pa f g (δ!₂ (Fin.last n)) + Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄) := by
|
||||
have hll : f (Fin.castSucc (Fin.last (n ))) =
|
||||
- (Pa f g (δ!₂ (Fin.last n)) + Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄) := by
|
||||
linear_combination h3 - 1 * hg
|
||||
rw [← hS] at hl hll
|
||||
rw [hl, hll]
|
||||
|
@ -145,7 +145,7 @@ lemma lineInCubicPerm_last_cond {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
|||
apply Or.inr
|
||||
exact h1
|
||||
|
||||
lemma lineInCubicPerm_last_perm {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
||||
lemma lineInCubicPerm_last_perm {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
||||
(LIC : LineInCubicPerm S) : LineInPlaneCond S := by
|
||||
refine @Prop_three (2 * n.succ.succ) LineInPlaneProp S (δ!₂ (Fin.last n)) (δ!₁ (Fin.last n))
|
||||
δ!₄ ?_ ?_ ?_ ?_
|
||||
|
@ -156,15 +156,15 @@ lemma lineInCubicPerm_last_perm {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
|||
intro M
|
||||
exact lineInCubicPerm_last_cond (lineInCubicPerm_permute LIC M)
|
||||
|
||||
lemma lineInCubicPerm_constAbs {S : (PureU1 (2 * n.succ.succ)).Sols}
|
||||
lemma lineInCubicPerm_constAbs {S : (PureU1 (2 * n.succ.succ)).Sols}
|
||||
(LIC : LineInCubicPerm S.1.1) : ConstAbs S.val :=
|
||||
linesInPlane_constAbs_AF S (lineInCubicPerm_last_perm LIC)
|
||||
|
||||
theorem lineInCubicPerm_vectorLike {S : (PureU1 (2 * n.succ.succ)).Sols}
|
||||
theorem lineInCubicPerm_vectorLike {S : (PureU1 (2 * n.succ.succ)).Sols}
|
||||
(LIC : LineInCubicPerm S.1.1) : VectorLikeEven S.val :=
|
||||
ConstAbs.boundary_value_even S.1.1 (lineInCubicPerm_constAbs LIC)
|
||||
|
||||
theorem lineInCubicPerm_in_plane (S : (PureU1 (2 * n.succ.succ)).Sols)
|
||||
theorem lineInCubicPerm_in_plane (S : (PureU1 (2 * n.succ.succ)).Sols)
|
||||
(LIC : LineInCubicPerm S.1.1) : ∃ (M : (FamilyPermutations (2 * n.succ.succ)).group),
|
||||
(FamilyPermutations (2 * n.succ.succ)).linSolRep M S.1.1
|
||||
∈ Submodule.span ℚ (Set.range basis) :=
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue