reactor: Removal of double spaces

This commit is contained in:
jstoobysmith 2024-07-12 11:23:02 -04:00
parent ce92e1d649
commit 13f62a50eb
64 changed files with 550 additions and 546 deletions

View file

@ -14,7 +14,7 @@ import Mathlib.RepresentationTheory.Basic
/-!
# Parameterization in odd case
Given maps `g : Fin n → `, `f : Fin n → ` and `a : ` we form a solution to the anomaly
Given maps `g : Fin n → `, `f : Fin n → ` and `a : ` we form a solution to the anomaly
equations. We show that every solution can be got in this way, up to permutation, unless it is zero.
The main reference is:
@ -31,7 +31,7 @@ open VectorLikeOddPlane
/-- Given a `g f : Fin n → ` and a `a : ` we form a linear solution. We will later
show that this can be extended to a complete solution. -/
def parameterizationAsLinear (g f : Fin n → ) (a : ) :
def parameterizationAsLinear (g f : Fin n → ) (a : ) :
(PureU1 (2 * n + 1)).LinSols :=
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P' g +
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P!' f)
@ -44,7 +44,7 @@ lemma parameterizationAsLinear_val (g f : Fin n → ) (a : ) :
change a • (_ • (P' g).val + _ • (P!' f).val) = _
rw [P'_val, P!'_val]
lemma parameterizationCharge_cube (g f : Fin n → ) (a : ):
lemma parameterizationCharge_cube (g f : Fin n → ) (a : ):
(accCube (2 * n + 1)) (parameterizationAsLinear g f a).val = 0 := by
change accCubeTriLinSymm.toCubic _ = 0
rw [parameterizationAsLinear_val]
@ -64,7 +64,7 @@ def parameterization (g f : Fin n → ) (a : ) :
parameterizationCharge_cube g f a⟩
lemma anomalyFree_param {S : (PureU1 (2 * n + 1)).Sols}
(g f : Fin n → ) (hS : S.val = P g + P! f) :
(g f : Fin n → ) (hS : S.val = P g + P! f) :
accCubeTriLinSymm (P g) (P g) (P! f) =
- accCubeTriLinSymm (P! f) (P! f) (P g) := by
have hC := S.cubicSol
@ -75,15 +75,15 @@ lemma anomalyFree_param {S : (PureU1 (2 * n + 1)).Sols}
erw [P!_accCube] at hC
linear_combination hC / 3
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
In this case our parameterization above will be able to recover this point. -/
def GenericCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
∀ (g f : Fin n.succ → ) (_ : S.val = P g + P! f) ,
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
∀ (g f : Fin n.succ → ) (_ : S.val = P g + P! f) ,
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
lemma genericCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
(hs : ∃ (g f : Fin n.succ → ), S.val = P g + P! f ∧
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0) : GenericCase S := by
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0) : GenericCase S := by
intro g f hS hC
obtain ⟨g', f', hS', hC'⟩ := hs
rw [hS] at hS'
@ -91,15 +91,15 @@ lemma genericCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
rw [hS'.1, hS'.2] at hC
exact hC' hC
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
In this case we will show that S is zero if it is true for all permutations. -/
def SpecialCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
def SpecialCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
∀ (g f : Fin n.succ → ) (_ : S.val = P g + P! f) ,
accCubeTriLinSymm (P g) (P g) (P! f) = 0
lemma specialCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
(hs : ∃ (g f : Fin n.succ → ), S.val = P g + P! f ∧
accCubeTriLinSymm (P g) (P g) (P! f) = 0) : SpecialCase S := by
accCubeTriLinSymm (P g) (P g) (P! f) = 0) : SpecialCase S := by
intro g f hS
obtain ⟨g', f', hS', hC'⟩ := hs
rw [hS] at hS'
@ -110,7 +110,7 @@ lemma specialCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
lemma generic_or_special (S : (PureU1 (2 * n.succ + 1)).Sols) :
GenericCase S SpecialCase S := by
obtain ⟨g, f, h⟩ := span_basis S.1.1
have h1 : accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
have h1 : accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
exact ne_or_eq _ _
cases h1 <;> rename_i h1
@ -118,7 +118,7 @@ lemma generic_or_special (S : (PureU1 (2 * n.succ + 1)).Sols) :
exact Or.inr (specialCase_exists S ⟨g, f, h, h1⟩)
theorem generic_case {S : (PureU1 (2 * n.succ + 1)).Sols} (h : GenericCase S) :
∃ g f a, S = parameterization g f a := by
∃ g f a, S = parameterization g f a := by
obtain ⟨g, f, hS⟩ := span_basis S.1.1
use g, f, (accCubeTriLinSymm (P! f) (P! f) (P g))⁻¹
rw [parameterization]
@ -164,7 +164,7 @@ theorem special_case {S : (PureU1 (2 * n.succ.succ + 1)).Sols}
(h : ∀ (M : (FamilyPermutations (2 * n.succ.succ + 1)).group),
SpecialCase ((FamilyPermutations (2 * n.succ.succ + 1)).solAction.toFun S M)) :
S.1.1 = 0 := by
have ht := special_case_lineInCubic_perm h
have ht := special_case_lineInCubic_perm h
exact lineInCubicPerm_zero ht
end Odd
end PureU1