reactor: Removal of double spaces
This commit is contained in:
parent
ce92e1d649
commit
13f62a50eb
64 changed files with 550 additions and 546 deletions
|
@ -36,17 +36,17 @@ namespace SMNoGrav
|
|||
|
||||
variable {n : ℕ}
|
||||
|
||||
lemma SU2Sol (S : (SMNoGrav n).LinSols) : accSU2 S.val = 0 := by
|
||||
lemma SU2Sol (S : (SMNoGrav n).LinSols) : accSU2 S.val = 0 := by
|
||||
have hS := S.linearSol
|
||||
simp at hS
|
||||
exact hS 0
|
||||
|
||||
lemma SU3Sol (S : (SMNoGrav n).LinSols) : accSU3 S.val = 0 := by
|
||||
lemma SU3Sol (S : (SMNoGrav n).LinSols) : accSU3 S.val = 0 := by
|
||||
have hS := S.linearSol
|
||||
simp at hS
|
||||
exact hS 1
|
||||
|
||||
lemma cubeSol (S : (SMNoGrav n).Sols) : accCube S.val = 0 := by
|
||||
lemma cubeSol (S : (SMNoGrav n).Sols) : accCube S.val = 0 := by
|
||||
exact S.cubicSol
|
||||
|
||||
/-- An element of `charges` which satisfies the linear ACCs
|
||||
|
@ -84,7 +84,7 @@ def chargeToAF (S : (SMNoGrav n).Charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S
|
|||
(hc : accCube S = 0) : (SMNoGrav n).Sols :=
|
||||
quadToAF (chargeToQuad S hSU2 hSU3) hc
|
||||
|
||||
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic and cubic ACCs
|
||||
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic and cubic ACCs
|
||||
gives us a element of `AnomalyFree`. -/
|
||||
def linearToAF (S : (SMNoGrav n).LinSols)
|
||||
(hc : accCube S.val = 0) : (SMNoGrav n).Sols :=
|
||||
|
|
|
@ -25,11 +25,11 @@ open SMACCs
|
|||
open BigOperators
|
||||
|
||||
lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
||||
E S.val (0 : Fin 1) = 0 := by
|
||||
E S.val (0 : Fin 1) = 0 := by
|
||||
let S' := linearParameters.bijection.symm S.1.1
|
||||
have hC := cubeSol S
|
||||
have hS' := congrArg (fun S => S.val) (linearParameters.bijection.right_inv S.1.1)
|
||||
change S'.asCharges = S.val at hS'
|
||||
change S'.asCharges = S.val at hS'
|
||||
rw [← hS'] at hC
|
||||
apply Iff.intro
|
||||
intro hQ
|
||||
|
@ -37,7 +37,7 @@ lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
|||
intro hE
|
||||
exact S'.cubic_zero_E'_zero hC hE
|
||||
|
||||
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
||||
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
||||
accGrav S.val = 0 := by
|
||||
rw [accGrav]
|
||||
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||||
|
@ -59,12 +59,12 @@ lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0
|
|||
have hC := cubeSol S
|
||||
have hS' := congrArg (fun S => S.val.val)
|
||||
(linearParametersQENeqZero.bijection.right_inv ⟨S.1.1, And.intro hQ hE⟩)
|
||||
change _ = S.val at hS'
|
||||
change _ = S.val at hS'
|
||||
rw [← hS'] at hC
|
||||
rw [← hS']
|
||||
exact S'.grav_of_cubic hC FLTThree
|
||||
|
||||
/-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/
|
||||
/-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/
|
||||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
accGrav S.val = 0 := by
|
||||
by_cases hQ : Q S.val (0 : Fin 1)= 0
|
||||
|
|
|
@ -198,15 +198,15 @@ namespace linearParametersQENeqZero
|
|||
|
||||
@[ext]
|
||||
lemma ext {S T : linearParametersQENeqZero} (hx : S.x = T.x) (hv : S.v = T.v)
|
||||
(hw : S.w = T.w) : S = T := by
|
||||
(hw : S.w = T.w) : S = T := by
|
||||
cases' S
|
||||
simp_all only
|
||||
|
||||
/-- A map from `linearParametersQENeqZero` to `linearParameters`. -/
|
||||
@[simps!]
|
||||
def toLinearParameters (S : linearParametersQENeqZero) :
|
||||
{S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} :=
|
||||
⟨⟨S.x, 3 * S.x * (S.v - S.w) / (S.v + S.w), - 6 * S.x / (S.v + S.w)⟩,
|
||||
{S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} :=
|
||||
⟨⟨S.x, 3 * S.x * (S.v - S.w) / (S.v + S.w), - 6 * S.x / (S.v + S.w)⟩,
|
||||
by
|
||||
apply And.intro S.hx
|
||||
simp only [neg_mul, ne_eq, div_eq_zero_iff, neg_eq_zero, mul_eq_zero, OfNat.ofNat_ne_zero,
|
||||
|
@ -217,9 +217,9 @@ def toLinearParameters (S : linearParametersQENeqZero) :
|
|||
/-- A map from `linearParameters` to `linearParametersQENeqZero` in the special case when
|
||||
`Q'` and `E'` of the linear parameters are non-zero. -/
|
||||
@[simps!]
|
||||
def tolinearParametersQNeqZero (S : {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0}) :
|
||||
def tolinearParametersQNeqZero (S : {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0}) :
|
||||
linearParametersQENeqZero :=
|
||||
⟨S.1.Q', - (3 * S.1.Q' + S.1.Y) / S.1.E', - (3 * S.1.Q' - S.1.Y)/ S.1.E', S.2.1,
|
||||
⟨S.1.Q', - (3 * S.1.Q' + S.1.Y) / S.1.E', - (3 * S.1.Q' - S.1.Y)/ S.1.E', S.2.1,
|
||||
by
|
||||
simp only [ne_eq, neg_add_rev, neg_sub]
|
||||
field_simp
|
||||
|
@ -231,7 +231,7 @@ def tolinearParametersQNeqZero (S : {S : linearParameters // S.Q' ≠ 0 ∧ S.
|
|||
with `Q'` and `E'` non-zero. -/
|
||||
@[simps!]
|
||||
def bijectionLinearParameters :
|
||||
linearParametersQENeqZero ≃ {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} where
|
||||
linearParametersQENeqZero ≃ {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} where
|
||||
toFun := toLinearParameters
|
||||
invFun := tolinearParametersQNeqZero
|
||||
left_inv S := by
|
||||
|
@ -260,7 +260,7 @@ def bijectionLinearParameters :
|
|||
|
||||
/-- The bijection between `linearParametersQENeqZero` and `LinSols` with `Q` and `E` non-zero. -/
|
||||
def bijection : linearParametersQENeqZero ≃
|
||||
{S : (SMNoGrav 1).LinSols // Q S.val (0 : Fin 1) ≠ 0 ∧ E S.val (0 : Fin 1) ≠ 0} :=
|
||||
{S : (SMNoGrav 1).LinSols // Q S.val (0 : Fin 1) ≠ 0 ∧ E S.val (0 : Fin 1) ≠ 0} :=
|
||||
bijectionLinearParameters.trans (linearParameters.bijectionQEZero)
|
||||
|
||||
lemma cubic (S : linearParametersQENeqZero) :
|
||||
|
@ -297,7 +297,7 @@ lemma cubic_v_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.
|
|||
have h' : (S.w + 1) * (1 * S.w * S.w + (-1) * S.w + 1) = 0 := by
|
||||
ring_nf
|
||||
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
|
||||
have h'' : (1 * S.w * S.w + (-1) * S.w + 1) ≠ 0 := by
|
||||
have h'' : (1 * S.w * S.w + (-1) * S.w + 1) ≠ 0 := by
|
||||
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.w
|
||||
intro s
|
||||
by_contra hn
|
||||
|
@ -315,7 +315,7 @@ lemma cube_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.v
|
|||
have h' : (S.v + 1) * (1 * S.v * S.v + (-1) * S.v + 1) = 0 := by
|
||||
ring_nf
|
||||
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
|
||||
have h'' : (1 * S.v * S.v + (-1) * S.v + 1) ≠ 0 := by
|
||||
have h'' : (1 * S.v * S.v + (-1) * S.v + 1) ≠ 0 := by
|
||||
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.v
|
||||
intro s
|
||||
by_contra hn
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue