reactor: Removal of double spaces

This commit is contained in:
jstoobysmith 2024-07-12 11:23:02 -04:00
parent ce92e1d649
commit 13f62a50eb
64 changed files with 550 additions and 546 deletions

View file

@ -16,7 +16,7 @@ We define the group of permutations for the SM charges with no RHN.
universe v u
open Nat
open Finset
open Finset
namespace SM
@ -26,7 +26,7 @@ open BigOperators
/-- The group of `Sₙ` permutations for each species. -/
@[simp]
def PermGroup (n : ) := ∀ (_ : Fin 5), Equiv.Perm (Fin n)
def PermGroup (n : ) := ∀ (_ : Fin 5), Equiv.Perm (Fin n)
variable {n : }
@ -72,32 +72,32 @@ lemma toSpecies_sum_invariant (m : ) (f : PermGroup n) (S : (SMCharges n).Cha
exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x)
(fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl)
lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accGrav (repCharges f S) = accGrav S :=
accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accSU2 (repCharges f S) = accSU2 S :=
accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accSU3 (repCharges f S) = accSU3 S :=
accSU3_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accYY_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
lemma accYY_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accYY (repCharges f S) = accYY S :=
accYY_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accQuad_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
lemma accQuad_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accQuad (repCharges f S) = accQuad S :=
accQuad_ext
(toSpecies_sum_invariant 2 f S)
lemma accCube_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
lemma accCube_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accCube (repCharges f S) = accCube S :=
accCube_ext (fun j => toSpecies_sum_invariant 3 f S j)