reactor: Removal of double spaces

This commit is contained in:
jstoobysmith 2024-07-12 11:23:02 -04:00
parent ce92e1d649
commit 13f62a50eb
64 changed files with 550 additions and 546 deletions

View file

@ -27,7 +27,7 @@ noncomputable section
leading diagonal. -/
@[simp]
def phaseShiftMatrix (a b c : ) : Matrix (Fin 3) (Fin 3) :=
![![cexp (I * a), 0, 0], ![0, cexp (I * b), 0], ![0, 0, cexp (I * c)]]
![![cexp (I * a), 0, 0], ![0, cexp (I * b), 0], ![0, 0, cexp (I * c)]]
lemma phaseShiftMatrix_one : phaseShiftMatrix 0 0 0 = 1 := by
ext i j
@ -49,7 +49,7 @@ lemma phaseShiftMatrix_mul (a b c d e f : ) :
fin_cases i <;> fin_cases j <;>
simp [Matrix.mul_apply, Fin.sum_univ_three]
any_goals rw [mul_add, exp_add]
change cexp (I * ↑c) * 0 = 0
change cexp (I * ↑c) * 0 = 0
simp
/-- Given three real numbers `a b c` the unitary matrix with `exp (I * a)` etc on the
@ -161,7 +161,7 @@ lemma equiv (V : CKMMatrix) (a b c d e f : ) :
rfl
lemma ud (V : CKMMatrix) (a b c d e f : ) :
(phaseShiftApply V a b c d e f).1 0 0 = cexp (a * I + d * I) * V.1 0 0 := by
(phaseShiftApply V a b c d e f).1 0 0 = cexp (a * I + d * I) * V.1 0 0 := by
simp only [Fin.isValue, phaseShiftApply_coe]
rw [mul_apply, Fin.sum_univ_three]
rw [mul_apply, mul_apply, mul_apply, Fin.sum_univ_three, Fin.sum_univ_three, Fin.sum_univ_three]
@ -173,7 +173,7 @@ lemma ud (V : CKMMatrix) (a b c d e f : ) :
ring_nf
lemma us (V : CKMMatrix) (a b c d e f : ) :
(phaseShiftApply V a b c d e f).1 0 1 = cexp (a * I + e * I) * V.1 0 1 := by
(phaseShiftApply V a b c d e f).1 0 1 = cexp (a * I + e * I) * V.1 0 1 := by
simp only [Fin.isValue, phaseShiftApply_coe]
rw [mul_apply, Fin.sum_univ_three]
rw [mul_apply, mul_apply, mul_apply, Fin.sum_univ_three, Fin.sum_univ_three, Fin.sum_univ_three]
@ -184,7 +184,7 @@ lemma us (V : CKMMatrix) (a b c d e f : ) :
ring_nf
lemma ub (V : CKMMatrix) (a b c d e f : ) :
(phaseShiftApply V a b c d e f).1 0 2 = cexp (a * I + f * I) * V.1 0 2 := by
(phaseShiftApply V a b c d e f).1 0 2 = cexp (a * I + f * I) * V.1 0 2 := by
simp only [Fin.isValue, phaseShiftApply_coe]
rw [mul_apply, Fin.sum_univ_three]
rw [mul_apply, mul_apply, mul_apply, Fin.sum_univ_three, Fin.sum_univ_three, Fin.sum_univ_three]
@ -236,7 +236,7 @@ lemma td (V : CKMMatrix) (a b c d e f : ) :
simp only [Fin.isValue, cons_val', cons_val_zero, empty_val', cons_val_fin_one, vecCons_const,
cons_val_two, tail_val', head_val', cons_val_one, head_cons, tail_cons, head_fin_const,
zero_mul, add_zero, mul_zero]
change (0 * _ + _ ) * _ + (0 * _ + _ ) * 0 = _
change (0 * _ + _ ) * _ + (0 * _ + _ ) * 0 = _
simp only [Fin.isValue, zero_mul, zero_add, mul_zero, add_zero]
rw [exp_add]
ring_nf
@ -272,7 +272,7 @@ end phaseShiftApply
def VAbs' (V : unitaryGroup (Fin 3) ) (i j : Fin 3) : := Complex.abs (V i j)
lemma VAbs'_equiv (i j : Fin 3) (V U : CKMMatrix) (h : V ≈ U) :
VAbs' V i j = VAbs' U i j := by
VAbs' V i j = VAbs' U i j := by
simp only [VAbs']
obtain ⟨a, b, c, e, f, g, h⟩ := h
rw [h]
@ -288,7 +288,7 @@ lemma VAbs'_equiv (i j : Fin 3) (V U : CKMMatrix) (h : V ≈ U) :
all_goals change Complex.abs (0 * _ + _) = _
all_goals simp [Complex.abs_exp]
/-- The absolute value of the `(i,j)`th any representative of `⟦V⟧`. -/
/-- The absolute value of the `(i,j)`th any representative of `⟦V⟧`. -/
def VAbs (i j : Fin 3) : Quotient CKMMatrixSetoid → :=
Quotient.lift (fun V => VAbs' V i j) (VAbs'_equiv i j)

View file

@ -28,10 +28,10 @@ namespace Invariant
def jarlskogCKM (V : CKMMatrix) : :=
[V]us * [V]cb * conj [V]ub * conj [V]cs
lemma jarlskogCKM_equiv (V U : CKMMatrix) (h : V ≈ U) :
lemma jarlskogCKM_equiv (V U : CKMMatrix) (h : V ≈ U) :
jarlskogCKM V = jarlskogCKM U := by
obtain ⟨a, b, c, e, f, g, h⟩ := h
change V = phaseShiftApply U a b c e f g at h
change V = phaseShiftApply U a b c e f g at h
rw [h]
simp only [jarlskogCKM, Fin.isValue, phaseShiftApply.ub,
phaseShiftApply.us, phaseShiftApply.cb, phaseShiftApply.cs]
@ -51,8 +51,8 @@ def jarlskog : Quotient CKMMatrixSetoid → :=
/-- An invariant for CKM mtrices corresponding to the square of the absolute values
of the `us`, `ub` and `cb` elements multipled together divied by `(VudAbs V ^ 2 + VusAbs V ^2)` .
-/
def VusVubVcdSq (V : Quotient CKMMatrixSetoid) : :=
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 / (VudAbs V ^ 2 + VusAbs V ^2)
def VusVubVcdSq (V : Quotient CKMMatrixSetoid) : :=
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 / (VudAbs V ^ 2 + VusAbs V ^2)
/-- An invariant for CKM matrices. The argument of this invariant is `δ₁₃` in the
standard parameterization. -/

View file

@ -126,7 +126,7 @@ lemma shift_cross_product_phase_zero {V : CKMMatrix} {τ : }
have hτ0 := congrFun hτ 0
simp [tRow] at hτ0
rw [← hτ0]
rw [← mul_assoc, ← exp_add, h1]
rw [← mul_assoc, ← exp_add, h1]
congr 2
simp only [ofReal_sub, ofReal_neg]
ring
@ -166,15 +166,15 @@ def FstRowThdColRealCond (U : CKMMatrix) : Prop := [U]ud = VudAbs ⟦U⟧ ∧ [U
the cross product of the conjugates of the `u`th and `c`th rows, and the `cd`th and `cs`th
elements are real and related in a set way.
-/
def ubOnePhaseCond (U : CKMMatrix) : Prop :=
def ubOnePhaseCond (U : CKMMatrix) : Prop :=
[U]ud = 0 ∧ [U]us = 0 ∧ [U]cb = 0 ∧ [U]ub = 1 ∧ [U]t = conj [U]u ×₃ conj [U]c
∧ [U]cd = - VcdAbs ⟦U⟧ ∧ [U]cs = √(1 - VcdAbs ⟦U⟧ ^ 2)
lemma fstRowThdColRealCond_shift_solution {V : CKMMatrix} (h1 : a + d = - arg [V]ud)
(h2 : a + e = - arg [V]us) (h3 : b + f = - arg [V]cb)
(h2 : a + e = - arg [V]us) (h3 : b + f = - arg [V]cb)
(h4 : c + f = - arg [V]tb) (h5 : τ = - a - b - c - d - e - f) :
b = - τ + arg [V]ud + arg [V]us + arg [V]tb + a ∧
c = - τ + arg [V]cb + arg [V]ud + arg [V]us + a ∧
b = - τ + arg [V]ud + arg [V]us + arg [V]tb + a ∧
c = - τ + arg [V]cb + arg [V]ud + arg [V]us + a ∧
d = - arg [V]ud - a ∧
e = - arg [V]us - a ∧
f = τ - arg [V]ud - arg [V]us - arg [V]cb - arg [V]tb - a := by
@ -202,11 +202,11 @@ lemma fstRowThdColRealCond_shift_solution {V : CKMMatrix} (h1 : a + d = - arg [V
lemma ubOnePhaseCond_shift_solution {V : CKMMatrix} (h1 : a + f = - arg [V]ub)
(h2 : 0 = - a - b - c - d - e - f)
(h3 : b + d = Real.pi - arg [V]cd) (h5 : b + e = - arg [V]cs) :
c = - Real.pi + arg [V]cd + arg [V]cs + arg [V]ub + b
d = Real.pi - arg [V]cd - b ∧
e = - arg [V]cs - b
f = - arg [V]ub - a := by
(h3 : b + d = Real.pi - arg [V]cd) (h5 : b + e = - arg [V]cs) :
c = - Real.pi + arg [V]cd + arg [V]cs + arg [V]ub + b ∧
d = Real.pi - arg [V]cd - b ∧
e = - arg [V]cs - b ∧
f = - arg [V]ub - a := by
have hf : f = - arg [V]ub - a := by
linear_combination h1
subst hf
@ -227,21 +227,21 @@ lemma fstRowThdColRealCond_holds_up_to_equiv (V : CKMMatrix) :
obtain ⟨τ, hτ⟩ := V.uRow_cross_cRow_eq_tRow
let U : CKMMatrix := phaseShiftApply V
0
(- τ + arg [V]ud + arg [V]us + arg [V]tb )
(- τ + arg [V]cb + arg [V]ud + arg [V]us )
(- τ + arg [V]ud + arg [V]us + arg [V]tb )
(- τ + arg [V]cb + arg [V]ud + arg [V]us )
(- arg [V]ud )
(- arg [V]us)
(τ - arg [V]ud - arg [V]us - arg [V]cb - arg [V]tb)
have hUV : Quotient.mk CKMMatrixSetoid U = ⟦V⟧ := by
simp only [Quotient.eq]
symm
exact phaseShiftApply.equiv _ _ _ _ _ _ _
exact phaseShiftApply.equiv _ _ _ _ _ _ _
use U
apply And.intro
exact phaseShiftApply.equiv _ _ _ _ _ _ _
apply And.intro
rw [hUV]
apply shift_ud_phase_zero _ _ _ _ _ _ _
apply shift_ud_phase_zero _ _ _ _ _ _ _
ring
apply And.intro
rw [hUV]
@ -259,15 +259,15 @@ lemma fstRowThdColRealCond_holds_up_to_equiv (V : CKMMatrix) :
ring
lemma ubOnePhaseCond_hold_up_to_equiv_of_ub_one {V : CKMMatrix} (hb : ¬ ([V]ud ≠ 0 [V]us ≠ 0))
(hV : FstRowThdColRealCond V) :
(hV : FstRowThdColRealCond V) :
∃ (U : CKMMatrix), V ≈ U ∧ ubOnePhaseCond U:= by
let U : CKMMatrix := phaseShiftApply V 0 0 (- Real.pi + arg [V]cd + arg [V]cs + arg [V]ub)
(Real.pi - arg [V]cd ) (- arg [V]cs) (- arg [V]ub )
(Real.pi - arg [V]cd ) (- arg [V]cs) (- arg [V]ub )
use U
have hUV : Quotient.mk CKMMatrixSetoid U= ⟦V⟧ := by
simp only [Quotient.eq]
symm
exact phaseShiftApply.equiv _ _ _ _ _ _ _
exact phaseShiftApply.equiv _ _ _ _ _ _ _
apply And.intro
exact phaseShiftApply.equiv _ _ _ _ _ _ _
apply And.intro
@ -294,7 +294,7 @@ lemma ubOnePhaseCond_hold_up_to_equiv_of_ub_one {V : CKMMatrix} (hb : ¬ ([V]ud
exact h1
apply And.intro
· have hU1 : [U]ub = VubAbs ⟦V⟧ := by
apply shift_ub_phase_zero _ _ _ _ _ _ _
apply shift_ub_phase_zero _ _ _ _ _ _ _
ring
rw [hU1]
have h1:= (ud_us_neq_zero_iff_ub_neq_one V).mpr.mt hb
@ -307,7 +307,7 @@ lemma ubOnePhaseCond_hold_up_to_equiv_of_ub_one {V : CKMMatrix} (hb : ¬ ([V]ud
ring
apply And.intro
· rw [hUV]
apply shift_cd_phase_pi _ _ _ _ _ _ _
apply shift_cd_phase_pi _ _ _ _ _ _ _
ring
have hcs : [U]cs = VcsAbs ⟦U⟧ := by
rw [hUV]
@ -338,7 +338,7 @@ lemma cd_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0 [V]us ≠
lemma cs_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0 [V]us ≠ 0)
(hV : FstRowThdColRealCond V) :
[V]cs = (VtbAbs ⟦V⟧ * VudAbs ⟦V⟧ / (VudAbs ⟦V⟧ ^2 + VusAbs ⟦V⟧ ^2))
+ (- VubAbs ⟦V⟧ * VusAbs ⟦V⟧ * VcbAbs ⟦V⟧/ (VudAbs ⟦V⟧ ^2 + VusAbs ⟦V⟧ ^2))
+ (- VubAbs ⟦V⟧ * VusAbs ⟦V⟧ * VcbAbs ⟦V⟧/ (VudAbs ⟦V⟧ ^2 + VusAbs ⟦V⟧ ^2))
* cexp (- arg [V]ub * I) := by
have hτ : [V]t = cexp ((0 : ) * I) • (conj ([V]u) ×₃ conj ([V]c)) := by
simp only [ofReal_zero, zero_mul, exp_zero, one_smul]

View file

@ -64,7 +64,7 @@ lemma normSq_Vud_plus_normSq_Vus (V : CKMMatrix) :
normSq [V]ud + normSq [V]us = 1 - normSq [V]ub := by
linear_combination (fst_row_normalized_normSq V)
lemma VudAbs_sq_add_VusAbs_sq : VudAbs V ^ 2 + VusAbs V ^2 = 1 - VubAbs V ^2 := by
lemma VudAbs_sq_add_VusAbs_sq : VudAbs V ^ 2 + VusAbs V ^2 = 1 - VubAbs V ^2 := by
linear_combination (VAbs_sum_sq_row_eq_one V 0)
lemma ud_us_neq_zero_iff_ub_neq_one (V : CKMMatrix) :
@ -104,7 +104,7 @@ lemma normSq_Vud_plus_normSq_Vus_neq_zero_ {V : CKMMatrix} (hb : [V]ud ≠ 0
exact h2 h3
lemma VAbsub_neq_zero_Vud_Vus_neq_zero {V : Quotient CKMMatrixSetoid}
(hV : VAbs 0 2 V ≠ 1) :(VudAbs V ^ 2 + VusAbs V ^ 2) ≠ 0 := by
(hV : VAbs 0 2 V ≠ 1) :(VudAbs V ^ 2 + VusAbs V ^ 2) ≠ 0 := by
obtain ⟨V⟩ := V
change VubAbs ⟦V⟧ ≠ 1 at hV
simp only [VubAbs, VAbs, VAbs', Fin.isValue, Quotient.lift_mk] at hV
@ -112,7 +112,7 @@ lemma VAbsub_neq_zero_Vud_Vus_neq_zero {V : Quotient CKMMatrixSetoid}
simpa [← Complex.sq_abs] using (normSq_Vud_plus_normSq_Vus_neq_zero_ hV)
lemma VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero {V : Quotient CKMMatrixSetoid}
(hV : VAbs 0 2 V ≠ 1) : √(VudAbs V ^ 2 + VusAbs V ^ 2) ≠ 0 := by
(hV : VAbs 0 2 V ≠ 1) : √(VudAbs V ^ 2 + VusAbs V ^ 2) ≠ 0 := by
obtain ⟨V⟩ := V
rw [Real.sqrt_ne_zero (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))]
change VubAbs ⟦V⟧ ≠ 1 at hV
@ -120,7 +120,7 @@ lemma VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero {V : Quotient CKMMatrixSetoid}
rw [← ud_us_neq_zero_iff_ub_neq_one V] at hV
simpa [← Complex.sq_abs] using (normSq_Vud_plus_normSq_Vus_neq_zero_ hV)
lemma normSq_Vud_plus_normSq_Vus_neq_zero_ {V : CKMMatrix} (hb : [V]ud ≠ 0 [V]us ≠ 0) :
lemma normSq_Vud_plus_normSq_Vus_neq_zero_ {V : CKMMatrix} (hb : [V]ud ≠ 0 [V]us ≠ 0) :
(normSq [V]ud : ) + normSq [V]us ≠ 0 := by
have h1 := normSq_Vud_plus_normSq_Vus_neq_zero_ hb
simp at h1
@ -178,9 +178,9 @@ lemma VAbs_thd_eq_one_snd_eq_zero {V : Quotient CKMMatrixSetoid} {i : Fin 3} (hV
section crossProduct
lemma conj_Vtb_cross_product {V : CKMMatrix} {τ : }
lemma conj_Vtb_cross_product {V : CKMMatrix} {τ : }
(hτ : [V]t = cexp (τ * I) • (conj [V]u ×₃ conj [V]c)) :
conj [V]tb = cexp (- τ * I) * ([V]cs * [V]ud - [V]us * [V]cd) := by
conj [V]tb = cexp (- τ * I) * ([V]cs * [V]ud - [V]us * [V]cd) := by
have h1 := congrFun hτ 2
simp [crossProduct, tRow, uRow, cRow] at h1
apply congrArg conj at h1
@ -201,7 +201,7 @@ lemma conj_Vtb_mul_Vud {V : CKMMatrix} {τ : }
simp [exp_neg]
have h1 := exp_ne_zero (τ * I)
field_simp
have h2 : ([V]cs * [V]ud - [V]us * [V]cd) * conj [V]ud = [V]cs
have h2 : ([V]cs * [V]ud - [V]us * [V]cd) * conj [V]ud = [V]cs
* [V]ud * conj [V]ud - [V]us * ([V]cd * conj [V]ud) := by
ring
rw [h2, V.Vcd_mul_conj_Vud]
@ -217,7 +217,7 @@ lemma conj_Vtb_mul_Vus {V : CKMMatrix} {τ : }
simp [exp_neg]
have h1 := exp_ne_zero (τ * I)
field_simp
have h2 : ([V]cs * [V]ud - [V]us * [V]cd) * conj [V]us = ([V]cs
have h2 : ([V]cs * [V]ud - [V]us * [V]cd) * conj [V]us = ([V]cs
* conj [V]us) * [V]ud - [V]us * [V]cd * conj [V]us := by
ring
rw [h2, V.Vcs_mul_conj_Vus]
@ -225,18 +225,18 @@ lemma conj_Vtb_mul_Vus {V : CKMMatrix} {τ : }
simp only [Fin.isValue, neg_mul]
ring
lemma cs_of_ud_us_ub_cb_tb {V : CKMMatrix} (h : [V]ud ≠ 0 [V]us ≠ 0)
lemma cs_of_ud_us_ub_cb_tb {V : CKMMatrix} (h : [V]ud ≠ 0 [V]us ≠ 0)
{τ : } (hτ : [V]t = cexp (τ * I) • (conj ([V]u) ×₃ conj ([V]c))) :
[V]cs = (- conj [V]ub * [V]us * [V]cb +
cexp (τ * I) * conj [V]tb * conj [V]ud) / (normSq [V]ud + normSq [V]us) := by
[V]cs = (- conj [V]ub * [V]us * [V]cb +
cexp (τ * I) * conj [V]tb * conj [V]ud) / (normSq [V]ud + normSq [V]us) := by
have h1 := normSq_Vud_plus_normSq_Vus_neq_zero_ h
rw [conj_Vtb_mul_Vud hτ]
field_simp
ring
lemma cd_of_ud_us_ub_cb_tb {V : CKMMatrix} (h : [V]ud ≠ 0 [V]us ≠ 0)
lemma cd_of_ud_us_ub_cb_tb {V : CKMMatrix} (h : [V]ud ≠ 0 [V]us ≠ 0)
{τ : } (hτ : [V]t = cexp (τ * I) • (conj ([V]u) ×₃ conj ([V]c))) :
[V]cd = - (conj [V]ub * [V]ud * [V]cb + cexp (τ * I) * conj [V]tb * conj [V]us) /
[V]cd = - (conj [V]ub * [V]ud * [V]cb + cexp (τ * I) * conj [V]tb * conj [V]us) /
(normSq [V]ud + normSq [V]us) := by
have h1 := normSq_Vud_plus_normSq_Vus_neq_zero_ h
rw [conj_Vtb_mul_Vus hτ]
@ -247,7 +247,7 @@ end rows
section individual
lemma VAbs_ge_zero (i j : Fin 3) (V : Quotient CKMMatrixSetoid) : 0 ≤ VAbs i j V := by
lemma VAbs_ge_zero (i j : Fin 3) (V : Quotient CKMMatrixSetoid) : 0 ≤ VAbs i j V := by
obtain ⟨V, hV⟩ := Quot.exists_rep V
rw [← hV]
exact Complex.abs.nonneg _
@ -291,7 +291,7 @@ lemma thd_col_normalized_normSq (V : CKMMatrix) :
repeat rw [Complex.sq_abs] at h1
exact h1
lemma cb_eq_zero_of_ud_us_zero {V : CKMMatrix} (h : [V]ud = 0 ∧ [V]us = 0) :
lemma cb_eq_zero_of_ud_us_zero {V : CKMMatrix} (h : [V]ud = 0 ∧ [V]us = 0) :
[V]cb = 0 := by
have h1 := fst_row_normalized_abs V
rw [← thd_col_normalized_abs V] at h1

View file

@ -130,13 +130,13 @@ lemma tRow_cRow_orthog (V : CKMMatrix) : conj [V]t ⬝ᵥ [V]c = 0 := by
rw [mul_comm (V.1 _ 0) _, mul_comm (V.1 _ 1) _, mul_comm (V.1 _ 2) _] at ht
exact ht
lemma uRow_cross_cRow_conj (V : CKMMatrix) : conj (conj [V]u ×₃ conj [V]c) = [V]u ×₃ [V]c := by
lemma uRow_cross_cRow_conj (V : CKMMatrix) : conj (conj [V]u ×₃ conj [V]c) = [V]u ×₃ [V]c := by
simp only [crossProduct, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, LinearMap.mk₂_apply,
Pi.conj_apply]
funext i
fin_cases i <;> simp
lemma cRow_cross_tRow_conj (V : CKMMatrix) : conj (conj [V]c ×₃ conj [V]t) = [V]c ×₃ [V]t := by
lemma cRow_cross_tRow_conj (V : CKMMatrix) : conj (conj [V]c ×₃ conj [V]t) = [V]c ×₃ [V]t := by
simp only [crossProduct, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, LinearMap.mk₂_apply,
Pi.conj_apply]
funext i
@ -169,9 +169,9 @@ lemma rows_linearly_independent (V : CKMMatrix) : LinearIndependent (rows V)
intro g hg
rw [Fin.sum_univ_three] at hg
simp only [Fin.isValue, rows] at hg
have h0 := congrArg (fun X => conj [V]u ⬝ᵥ X) hg
have h1 := congrArg (fun X => conj [V]c ⬝ᵥ X) hg
have h2 := congrArg (fun X => conj [V]t ⬝ᵥ X) hg
have h0 := congrArg (fun X => conj [V]u ⬝ᵥ X) hg
have h1 := congrArg (fun X => conj [V]c ⬝ᵥ X) hg
have h2 := congrArg (fun X => conj [V]t ⬝ᵥ X) hg
simp only [Fin.isValue, dotProduct_add, dotProduct_smul, Pi.conj_apply,
smul_eq_mul, dotProduct_zero] at h0 h1 h2
rw [uRow_normalized, uRow_cRow_orthog, uRow_tRow_orthog] at h0
@ -184,7 +184,7 @@ lemma rows_linearly_independent (V : CKMMatrix) : LinearIndependent (rows V)
· exact h1
· exact h2
lemma rows_card : Fintype.card (Fin 3) = FiniteDimensional.finrank (Fin 3 → ) := by
lemma rows_card : Fintype.card (Fin 3) = FiniteDimensional.finrank (Fin 3 → ) := by
simp
/-- The rows of a CKM matrix as a basis of `ℂ³`. -/
@ -198,24 +198,24 @@ lemma cRow_cross_tRow_eq_uRow (V : CKMMatrix) :
(conj [V]c ×₃ conj [V]t))
simp only [Fin.sum_univ_three, rowBasis, Fin.isValue,
coe_basisOfLinearIndependentOfCardEqFinrank, rows] at hg
have h0 := congrArg (fun X => conj [V]c ⬝ᵥ X) hg
have h1 := congrArg (fun X => conj [V]t ⬝ᵥ X) hg
have h0 := congrArg (fun X => conj [V]c ⬝ᵥ X) hg
have h1 := congrArg (fun X => conj [V]t ⬝ᵥ X) hg
simp only [Fin.isValue, dotProduct_add, dotProduct_smul, Pi.conj_apply,
smul_eq_mul, dotProduct_zero] at h0 h1
rw [cRow_normalized, cRow_uRow_orthog, cRow_tRow_orthog, dot_self_cross] at h0
rw [tRow_normalized, tRow_uRow_orthog, tRow_cRow_orthog, dot_cross_self] at h1
simp only [Fin.isValue, mul_zero, mul_one, zero_add, add_zero] at h0 h1 hg
simp only [h0, h1, zero_smul, add_zero] at hg
have h2 := congrArg (fun X => conj X ⬝ᵥ X) hg
have h2 := congrArg (fun X => conj X ⬝ᵥ X) hg
simp only [Fin.isValue, dotProduct_smul, Pi.conj_apply, Pi.smul_apply,
smul_eq_mul, _root_.map_mul, cRow_cross_tRow_normalized] at h2
have h3 : conj (g 0 • [V]u) = conj (g 0) • conj [V]u := by
have h3 : conj (g 0 • [V]u) = conj (g 0) • conj [V]u := by
funext i
fin_cases i <;> simp
simp only [h3, Fin.isValue, smul_dotProduct, Pi.conj_apply, smul_eq_mul,
uRow_normalized, Fin.isValue, mul_one, mul_conj, ← Complex.sq_abs] at h2
simp at h2
cases' h2 with h2 h2
cases' h2 with h2 h2
swap
have hx : Complex.abs (g 0) = -1 := by
simp [← ofReal_inj, Fin.isValue, ofReal_neg, ofReal_one, h2]
@ -223,7 +223,7 @@ lemma cRow_cross_tRow_eq_uRow (V : CKMMatrix) :
simp_all
have h4 : (0 : ) < 1 := by norm_num
· exact False.elim (lt_iff_not_le.mp h4 h3)
have hx : [V]u = (g 0)⁻¹ • (conj ([V]c) ×₃ conj ([V]t)) := by
have hx : [V]u = (g 0)⁻¹ • (conj ([V]c) ×₃ conj ([V]t)) := by
rw [← hg, smul_smul, inv_mul_cancel, one_smul]
by_contra hn
simp [hn] at h2
@ -238,30 +238,30 @@ lemma cRow_cross_tRow_eq_uRow (V : CKMMatrix) :
rw [hx, hτ]
lemma uRow_cross_cRow_eq_tRow (V : CKMMatrix) :
∃ (τ : ), [V]t = cexp (τ * I) • (conj ([V]u) ×₃ conj ([V]c)) := by
∃ (τ : ), [V]t = cexp (τ * I) • (conj ([V]u) ×₃ conj ([V]c)) := by
obtain ⟨g, hg⟩ := (mem_span_range_iff_exists_fun ).mp (Basis.mem_span (rowBasis V)
(conj ([V]u) ×₃ conj ([V]c)) )
rw [Fin.sum_univ_three, rowBasis] at hg
simp at hg
have h0 := congrArg (fun X => conj [V]u ⬝ᵥ X) hg
have h1 := congrArg (fun X => conj [V]c ⬝ᵥ X) hg
have h0 := congrArg (fun X => conj [V]u ⬝ᵥ X) hg
have h1 := congrArg (fun X => conj [V]c ⬝ᵥ X) hg
simp only [Fin.isValue, dotProduct_add, dotProduct_smul, Pi.conj_apply,
smul_eq_mul, dotProduct_zero] at h0 h1
rw [uRow_normalized, uRow_cRow_orthog, uRow_tRow_orthog, dot_self_cross] at h0
rw [cRow_normalized, cRow_uRow_orthog, cRow_tRow_orthog, dot_cross_self] at h1
simp only [Fin.isValue, mul_one, mul_zero, add_zero, zero_add] at h0 h1
simp only [Fin.isValue, h0, zero_smul, h1, add_zero, zero_add] at hg
have h2 := congrArg (fun X => conj X ⬝ᵥ X) hg
have h2 := congrArg (fun X => conj X ⬝ᵥ X) hg
simp only [Fin.isValue, dotProduct_smul, Pi.conj_apply, Pi.smul_apply,
smul_eq_mul, _root_.map_mul] at h2
rw [uRow_cross_cRow_normalized] at h2
have h3 : conj (g 2 • [V]t) = conj (g 2) • conj [V]t := by
have h3 : conj (g 2 • [V]t) = conj (g 2) • conj [V]t := by
funext i
fin_cases i <;> simp
simp only [h3, Fin.isValue, smul_dotProduct, Pi.conj_apply, smul_eq_mul, tRow_normalized,
Fin.isValue, mul_one, mul_conj, ← Complex.sq_abs, ofReal_pow, sq_eq_one_iff,
ofReal_eq_one] at h2
cases' h2 with h2 h2
cases' h2 with h2 h2
swap
have hx : Complex.abs (g 2) = -1 := by
simp [h2, ← ofReal_inj, Fin.isValue, ofReal_neg, ofReal_one]
@ -269,7 +269,7 @@ lemma uRow_cross_cRow_eq_tRow (V : CKMMatrix) :
simp_all
have h4 : (0 : ) < 1 := by norm_num
exact False.elim (lt_iff_not_le.mp h4 h3)
have hx : [V]t = (g 2)⁻¹ • (conj ([V]u) ×₃ conj ([V]c)) := by
have hx : [V]t = (g 2)⁻¹ • (conj ([V]u) ×₃ conj ([V]c)) := by
rw [← hg, @smul_smul, inv_mul_cancel, one_smul]
by_contra hn
simp [hn] at h2
@ -303,30 +303,30 @@ open CKMMatrix
variable (V : CKMMatrix) (a b c d e f : )
/-- The cross product of the conjugate of the `u` and `c` rows of a CKM matrix. -/
def ucCross : Fin 3 → :=
def ucCross : Fin 3 → :=
conj [phaseShiftApply V a b c d e f]u ×₃ conj [phaseShiftApply V a b c d e f]c
lemma ucCross_fst (V : CKMMatrix) : (ucCross V a b c d e f) 0 =
cexp ((- a * I) + (- b * I) + ( - e * I) + (- f * I)) * (conj [V]u ×₃ conj [V]c) 0 := by
cexp ((- a * I) + (- b * I) + ( - e * I) + (- f * I)) * (conj [V]u ×₃ conj [V]c) 0 := by
simp [ucCross, crossProduct, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
LinearMap.mk₂_apply, Pi.conj_apply, cons_val_zero, neg_mul, uRow, us, ub, cRow, cs, cb,
exp_add, exp_sub, ← exp_conj, conj_ofReal]
ring
lemma ucCross_snd (V : CKMMatrix) : (ucCross V a b c d e f) 1 =
cexp ((- a * I) + (- b * I) + ( - d * I) + (- f * I)) * (conj [V]u ×₃ conj [V]c) 1 := by
cexp ((- a * I) + (- b * I) + ( - d * I) + (- f * I)) * (conj [V]u ×₃ conj [V]c) 1 := by
simp [ucCross, crossProduct, uRow, us, ub, cRow, cs, cb, ud, cd, exp_add,
exp_sub, ← exp_conj, conj_ofReal]
ring
lemma ucCross_thd (V : CKMMatrix) : (ucCross V a b c d e f) 2 =
cexp ((- a * I) + (- b * I) + ( - d * I) + (- e * I)) * (conj [V]u ×₃ conj [V]c) 2 := by
cexp ((- a * I) + (- b * I) + ( - d * I) + (- e * I)) * (conj [V]u ×₃ conj [V]c) 2 := by
simp [ucCross, crossProduct, uRow, us, ub, cRow, cs, cb, ud, cd, exp_add, exp_sub,
← exp_conj, conj_ofReal]
ring
lemma uRow_mul (V : CKMMatrix) (a b c : ) :
[phaseShiftApply V a b c 0 0 0]u = cexp (a * I) • [V]u := by
[phaseShiftApply V a b c 0 0 0]u = cexp (a * I) • [V]u := by
funext i
simp only [Pi.smul_apply, smul_eq_mul]
fin_cases i <;>
@ -336,7 +336,7 @@ lemma uRow_mul (V : CKMMatrix) (a b c : ) :
simp [ub, uRow]
lemma cRow_mul (V : CKMMatrix) (a b c : ) :
[phaseShiftApply V a b c 0 0 0]c = cexp (b * I) • [V]c := by
[phaseShiftApply V a b c 0 0 0]c = cexp (b * I) • [V]c := by
funext i
simp only [Pi.smul_apply, smul_eq_mul]
fin_cases i <;>
@ -346,7 +346,7 @@ lemma cRow_mul (V : CKMMatrix) (a b c : ) :
simp [cb, cRow]
lemma tRow_mul (V : CKMMatrix) (a b c : ) :
[phaseShiftApply V a b c 0 0 0]t = cexp (c * I) • [V]t := by
[phaseShiftApply V a b c 0 0 0]t = cexp (c * I) • [V]t := by
funext i
simp only [Pi.smul_apply, smul_eq_mul]
fin_cases i <;>
@ -355,6 +355,6 @@ lemma tRow_mul (V : CKMMatrix) (a b c : ) :
simp [ts, tRow, ofReal_zero, zero_mul, add_zero, Fin.isValue, Fin.mk_one, cons_val_one, head_cons]
simp [tb, tRow]
end phaseShiftApply
end phaseShiftApply
end

View file

@ -25,7 +25,7 @@ noncomputable section
/-- Given four reals `θ₁₂ θ₁₃ θ₂₃ δ₁₃` the standard paramaterization of the CKM matrix
as a `3×3` complex matrix. -/
def standParamAsMatrix (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) : Matrix (Fin 3) (Fin 3) :=
def standParamAsMatrix (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) : Matrix (Fin 3) (Fin 3) :=
![![Real.cos θ₁₂ * Real.cos θ₁₃, Real.sin θ₁₂ * Real.cos θ₁₃, Real.sin θ₁₃ * exp (-I * δ₁₃)],
![(-Real.sin θ₁₂ * Real.cos θ₂₃) - (Real.cos θ₁₂ * Real.sin θ₁₃ * Real.sin θ₂₃ * exp (I * δ₁₃)),
Real.cos θ₁₂ * Real.cos θ₂₃ - Real.sin θ₁₂ * Real.sin θ₁₃ * Real.sin θ₂₃ * exp (I * δ₁₃),
@ -36,8 +36,8 @@ def standParamAsMatrix (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) : Matrix (Fin
open CKMMatrix
lemma standParamAsMatrix_unitary (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) :
((standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃)ᴴ * standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃) = 1 := by
lemma standParamAsMatrix_unitary (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) :
((standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃)ᴴ * standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃) = 1 := by
funext j i
simp only [standParamAsMatrix, neg_mul, Fin.isValue]
rw [mul_apply]
@ -139,7 +139,7 @@ lemma cross_product_t (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) :
ring
lemma eq_rows (U : CKMMatrix) {θ₁₂ θ₁₃ θ₂₃ δ₁₃ : } (hu : [U]u = [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]u)
(hc : [U]c = [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]c) (hU : [U]t = conj [U]u ×₃ conj [U]c) :
(hc : [U]c = [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]c) (hU : [U]t = conj [U]u ×₃ conj [U]c) :
U = standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ := by
apply ext_Rows hu hc
rw [hU, cross_product_t, hu, hc]
@ -149,7 +149,7 @@ lemma eq_exp_of_phases (θ₁₂ θ₁₃ θ₂₃ δ₁₃ δ₁₃' : ) (h
simp [standParam, standParamAsMatrix]
apply CKMMatrix_ext
simp only
rw [show exp (I * δ₁₃) = exp (I * δ₁₃') by rw [mul_comm, h, mul_comm]]
rw [show exp (I * δ₁₃) = exp (I * δ₁₃') by rw [mul_comm, h, mul_comm]]
rw [show cexp (-(I * ↑δ₁₃)) = cexp (-(I * ↑δ₁₃')) by rw [exp_neg, exp_neg, mul_comm, h, mul_comm]]
open Invariant in
@ -179,9 +179,9 @@ lemma VusVubVcdSq_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Rea
open Invariant in
lemma mulExpδ₁₃_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ) (h1 : 0 ≤ Real.sin θ₁₂)
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
mulExpδ₁₃ ⟦standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
sin θ₁₂ * cos θ₁₃ ^ 2 * sin θ₂₃ * sin θ₁₃ * cos θ₁₂ * cos θ₂₃ * cexp (I * δ₁₃) := by
sin θ₁₂ * cos θ₁₃ ^ 2 * sin θ₂₃ * sin θ₁₃ * cos θ₁₂ * cos θ₂₃ * cexp (I * δ₁₃) := by
rw [mulExpδ₁₃, VusVubVcdSq_eq _ _ _ _ h1 h2 h3 h4 ]
simp only [jarlskog, standParam, standParamAsMatrix, neg_mul,
Quotient.lift_mk, jarlskogCKM, Fin.isValue, cons_val', cons_val_one, head_cons,

View file

@ -12,7 +12,7 @@ import Mathlib.Analysis.SpecialFunctions.Complex.Arg
/-!
# Standard parameters for the CKM Matrix
Given a CKM matrix `V` we can extract four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`.
Given a CKM matrix `V` we can extract four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`.
These, when used in the standard parameterization return `V` up to equivalence.
This leads to the theorem `standParam.exists_for_CKMatrix` which says that up to equivalence every
@ -26,15 +26,15 @@ open CKMMatrix
noncomputable section
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₁₂` in the
standard parameterization. --/
standard parameterization. --/
def S₁₂ (V : Quotient CKMMatrixSetoid) : := VusAbs V / (√ (VudAbs V ^ 2 + VusAbs V ^ 2))
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₁₃` in the
standard parameterization. --/
standard parameterization. --/
def S₁₃ (V : Quotient CKMMatrixSetoid) : := VubAbs V
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
standard parameterization. --/
standard parameterization. --/
def S₂₃ (V : Quotient CKMMatrixSetoid) : :=
if VubAbs V = 1 then VcdAbs V
else VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2)
@ -56,7 +56,7 @@ standard parameterization. --/
def C₁₂ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₁₂ V)
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₃` in the
standard parameterization. --/
standard parameterization. --/
def C₁₃ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₁₃ V)
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
@ -64,7 +64,7 @@ standard parameterization. --/
def C₂₃ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₂₃ V)
/-- Given a CKM matrix `V` the real number corresponding to the phase `δ₁₃` in the
standard parameterization. --/
standard parameterization. --/
def δ₁₃ (V : Quotient CKMMatrixSetoid) : :=
arg (Invariant.mulExpδ₁₃ V)
@ -336,7 +336,7 @@ namespace standParam
open Invariant
lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ) :
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
refine mulExpδ₁₃_eq _ _ _ _ ?_ ?_ ?_ ?_
@ -348,11 +348,11 @@ lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ) :
exact Real.cos_arcsin_nonneg _
lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ) :
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
VudAbs ⟦V⟧ = 0 VubAbs ⟦V⟧ = 0 VusAbs ⟦V⟧ = 0 VcbAbs ⟦V⟧ = 0 VtbAbs ⟦V⟧ = 0 := by
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃,
VtbAbs_eq_C₂₃_mul_C₁₃, ← ofReal_inj,
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
simp only [ofReal_mul]
rw [← S₁₃_eq_sin_θ₁₃, ← S₁₂_eq_sin_θ₁₂, ← S₂₃_eq_sin_θ₂₃,
← C₁₃_eq_cos_θ₁₃, ← C₂₃_eq_cos_θ₂₃,← C₁₂_eq_cos_θ₁₂]
@ -364,7 +364,7 @@ lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ) :
aesop
lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ) :
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
rw [mulExpδ₁₃_on_param_δ₁₃]
@ -373,19 +373,19 @@ lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ) :
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
lemma mulExpδ₁₃_on_param_neq_zero_arg (V : CKMMatrix) (δ₁₃ : )
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
cexp (arg ( mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ) * I) =
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
cexp (arg ( mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ) * I) =
cexp (δ₁₃ * I) := by
have h1a := mulExpδ₁₃_on_param_δ₁₃ V δ₁₃
have habs := mulExpδ₁₃_on_param_abs V δ₁₃
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
rw [habs, h1a]
ring_nf
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (mulExpδ₁₃
⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
have habs_neq_zero :
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ) ≠ 0 := by
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ) ≠ 0 := by
simp only [ne_eq, ofReal_eq_zero, map_eq_zero]
exact h1
rw [← mul_right_inj' habs_neq_zero]
@ -393,7 +393,7 @@ lemma mulExpδ₁₃_on_param_neq_zero_arg (V : CKMMatrix) (δ₁₃ : )
lemma on_param_cos_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ) (h : Real.cos (θ₁₃ ⟦V⟧) = 0) :
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
have hS13 := congrArg ofReal (S₁₃_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
have hS13 := congrArg ofReal (S₁₃_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
simp [← S₁₃_eq_sin_θ₁₃] at hS13
have hC12 := congrArg ofReal (C₁₂_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
simp [← C₁₂_eq_cos_θ₁₂] at hC12
@ -638,8 +638,8 @@ theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
V ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (δ₁₃ ⟦V⟧) := by
obtain ⟨δ₁₃', hδ₃⟩ := exists_δ₁₃ V
have hSV := (Quotient.eq.mpr (hδ₃))
by_cases h : Invariant.mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
by_cases h : Invariant.mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
(δ₁₃ ⟦V⟧) (by rw [← mulExpδ₁₃_on_param_neq_zero_arg V δ₁₃' h, ← hSV, δ₁₃, Invariant.mulExpδ₁₃])
rw [h2] at hδ₃
exact hδ₃