reactor: Removal of double spaces

This commit is contained in:
jstoobysmith 2024-07-12 11:23:02 -04:00
parent ce92e1d649
commit 13f62a50eb
64 changed files with 550 additions and 546 deletions

View file

@ -12,7 +12,7 @@ import Mathlib.Analysis.SpecialFunctions.Complex.Arg
/-!
# Standard parameters for the CKM Matrix
Given a CKM matrix `V` we can extract four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`.
Given a CKM matrix `V` we can extract four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`.
These, when used in the standard parameterization return `V` up to equivalence.
This leads to the theorem `standParam.exists_for_CKMatrix` which says that up to equivalence every
@ -26,15 +26,15 @@ open CKMMatrix
noncomputable section
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₁₂` in the
standard parameterization. --/
standard parameterization. --/
def S₁₂ (V : Quotient CKMMatrixSetoid) : := VusAbs V / (√ (VudAbs V ^ 2 + VusAbs V ^ 2))
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₁₃` in the
standard parameterization. --/
standard parameterization. --/
def S₁₃ (V : Quotient CKMMatrixSetoid) : := VubAbs V
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
standard parameterization. --/
standard parameterization. --/
def S₂₃ (V : Quotient CKMMatrixSetoid) : :=
if VubAbs V = 1 then VcdAbs V
else VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2)
@ -56,7 +56,7 @@ standard parameterization. --/
def C₁₂ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₁₂ V)
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₃` in the
standard parameterization. --/
standard parameterization. --/
def C₁₃ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₁₃ V)
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
@ -64,7 +64,7 @@ standard parameterization. --/
def C₂₃ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₂₃ V)
/-- Given a CKM matrix `V` the real number corresponding to the phase `δ₁₃` in the
standard parameterization. --/
standard parameterization. --/
def δ₁₃ (V : Quotient CKMMatrixSetoid) : :=
arg (Invariant.mulExpδ₁₃ V)
@ -336,7 +336,7 @@ namespace standParam
open Invariant
lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ) :
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
refine mulExpδ₁₃_eq _ _ _ _ ?_ ?_ ?_ ?_
@ -348,11 +348,11 @@ lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ) :
exact Real.cos_arcsin_nonneg _
lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ) :
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
VudAbs ⟦V⟧ = 0 VubAbs ⟦V⟧ = 0 VusAbs ⟦V⟧ = 0 VcbAbs ⟦V⟧ = 0 VtbAbs ⟦V⟧ = 0 := by
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃,
VtbAbs_eq_C₂₃_mul_C₁₃, ← ofReal_inj,
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
simp only [ofReal_mul]
rw [← S₁₃_eq_sin_θ₁₃, ← S₁₂_eq_sin_θ₁₂, ← S₂₃_eq_sin_θ₂₃,
← C₁₃_eq_cos_θ₁₃, ← C₂₃_eq_cos_θ₂₃,← C₁₂_eq_cos_θ₁₂]
@ -364,7 +364,7 @@ lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ) :
aesop
lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ) :
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
rw [mulExpδ₁₃_on_param_δ₁₃]
@ -373,19 +373,19 @@ lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ) :
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
lemma mulExpδ₁₃_on_param_neq_zero_arg (V : CKMMatrix) (δ₁₃ : )
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
cexp (arg ( mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ) * I) =
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
cexp (arg ( mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ) * I) =
cexp (δ₁₃ * I) := by
have h1a := mulExpδ₁₃_on_param_δ₁₃ V δ₁₃
have habs := mulExpδ₁₃_on_param_abs V δ₁₃
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
rw [habs, h1a]
ring_nf
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (mulExpδ₁₃
⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
have habs_neq_zero :
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ) ≠ 0 := by
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ) ≠ 0 := by
simp only [ne_eq, ofReal_eq_zero, map_eq_zero]
exact h1
rw [← mul_right_inj' habs_neq_zero]
@ -393,7 +393,7 @@ lemma mulExpδ₁₃_on_param_neq_zero_arg (V : CKMMatrix) (δ₁₃ : )
lemma on_param_cos_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ) (h : Real.cos (θ₁₃ ⟦V⟧) = 0) :
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
have hS13 := congrArg ofReal (S₁₃_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
have hS13 := congrArg ofReal (S₁₃_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
simp [← S₁₃_eq_sin_θ₁₃] at hS13
have hC12 := congrArg ofReal (C₁₂_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
simp [← C₁₂_eq_cos_θ₁₂] at hC12
@ -638,8 +638,8 @@ theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
V ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (δ₁₃ ⟦V⟧) := by
obtain ⟨δ₁₃', hδ₃⟩ := exists_δ₁₃ V
have hSV := (Quotient.eq.mpr (hδ₃))
by_cases h : Invariant.mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
by_cases h : Invariant.mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
(δ₁₃ ⟦V⟧) (by rw [← mulExpδ₁₃_on_param_neq_zero_arg V δ₁₃' h, ← hSV, δ₁₃, Invariant.mulExpδ₁₃])
rw [h2] at hδ₃
exact hδ₃