reactor: Removal of double spaces

This commit is contained in:
jstoobysmith 2024-07-12 11:23:02 -04:00
parent ce92e1d649
commit 13f62a50eb
64 changed files with 550 additions and 546 deletions

View file

@ -30,7 +30,7 @@ We start studying the properties of matrices which preserve `ηLin`.
These matrices form the Lorentz group, which we will define in the next section at `lorentzGroup`.
-/
variable {d : }
variable {d : }
open minkowskiMetric in
/-- The Lorentz group is the subset of matrices which preserve the minkowski metric. -/
@ -74,7 +74,7 @@ lemma mem_iff_on_right : Λ ∈ LorentzGroup d ↔
rw [← dual_mulVec_right, mulVec_mulVec]
exact h x y
lemma mem_iff_dual_mul_self : Λ ∈ LorentzGroup d ↔ dual Λ * Λ = 1 := by
lemma mem_iff_dual_mul_self : Λ ∈ LorentzGroup d ↔ dual Λ * Λ = 1 := by
rw [mem_iff_on_right, matrix_eq_id_iff]
exact forall_comm
@ -145,7 +145,7 @@ namespace LorentzGroup
open minkowskiMetric
variable {Λ Λ' : LorentzGroup d}
variable {Λ Λ' : LorentzGroup d}
lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm
@ -172,7 +172,7 @@ def toGL : LorentzGroup d →* GL (Fin 1 ⊕ Fin d) where
map_one' := by
simp
rfl
map_mul' x y := by
map_mul' x y := by
simp only [lorentzGroupIsGroup, _root_.mul_inv_rev, coe_inv]
ext
rfl

View file

@ -99,7 +99,7 @@ lemma toMatrix_mulVec (u v : FuturePointing d) (x : LorentzVector d) :
open minkowskiMatrix LorentzVector in
@[simp]
lemma toMatrix_apply (u v : FuturePointing d) (μ ν : Fin 1 ⊕ Fin d) :
lemma toMatrix_apply (u v : FuturePointing d) (μ ν : Fin 1 ⊕ Fin d) :
(toMatrix u v) μ ν = η μ μ * (⟪e μ, e ν⟫ₘ + 2 * ⟪e ν, u⟫ₘ * ⟪e μ, v⟫ₘ
- ⟪e μ, u + v⟫ₘ * ⟪e ν, u + v⟫ₘ / (1 + ⟪u, v.1.1⟫ₘ)) := by
rw [matrix_apply_stdBasis (toMatrix u v) μ ν, toMatrix_mulVec]

View file

@ -27,7 +27,7 @@ variable (Λ : LorentzGroup d)
open LorentzVector
open minkowskiMetric
/-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/
/-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/
def IsOrthochronous : Prop := 0 ≤ timeComp Λ
lemma IsOrthochronous_iff_futurePointing :
@ -62,7 +62,7 @@ lemma not_orthochronous_iff_le_zero :
linarith
/-- The continuous map taking a Lorentz transformation to its `0 0` element. -/
def timeCompCont : C(LorentzGroup d, ) := ⟨fun Λ => timeComp Λ ,
def timeCompCont : C(LorentzGroup d, ) := ⟨fun Λ => timeComp Λ,
Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) (Sum.inl 0) (Sum.inl 0)⟩
/-- An auxillary function used in the definition of `orthchroMapReal`. -/
@ -75,7 +75,7 @@ lemma stepFunction_continuous : Continuous stepFunction := by
<;> intro a ha
rw [@Set.Iic_def, @frontier_Iic, @Set.mem_singleton_iff] at ha
rw [ha]
simp [neg_lt_self_iff, zero_lt_one, ↓reduceIte]
simp [neg_lt_self_iff, zero_lt_one, ↓reduceIte]
have h1 : ¬ (1 : ) ≤ 0 := by simp
exact Eq.symm (if_neg h1)
rw [Set.Ici_def, @frontier_Ici, @Set.mem_singleton_iff] at ha

View file

@ -31,7 +31,7 @@ lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 Λ.1.det = -1 := by
simp [det_mul, det_dual] at h1
exact mul_self_eq_one_iff.mp h1
local notation "ℤ₂" => Multiplicative (ZMod 2)
local notation "ℤ₂" => Multiplicative (ZMod 2)
instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin
@ -51,7 +51,7 @@ def coeFor₂ : C(({-1, 1} : Set ), ℤ₂) where
/-- The continuous map taking a Lorentz matrix to its determinant. -/
def detContinuous : C(𝓛 d, ℤ₂) :=
ContinuousMap.comp coeFor₂ {
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨Λ.1.det, Or.symm (LorentzGroup.det_eq_one_or_neg_one _)⟩,
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
@ -65,7 +65,7 @@ lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) :
intro h
simp [detContinuous] at h
cases' det_eq_one_or_neg_one Λ with h1 h1
<;> cases' det_eq_one_or_neg_one Λ' with h2 h2
<;> cases' det_eq_one_or_neg_one Λ' with h2 h2
<;> simp_all [h1, h2, h]
rw [← toMul_zero, @Equiv.apply_eq_iff_eq] at h
· change (0 : Fin 2) = (1 : Fin 2) at h