reactor: Removal of double spaces
This commit is contained in:
parent
ce92e1d649
commit
13f62a50eb
64 changed files with 550 additions and 546 deletions
|
@ -30,7 +30,7 @@ We start studying the properties of matrices which preserve `ηLin`.
|
|||
These matrices form the Lorentz group, which we will define in the next section at `lorentzGroup`.
|
||||
|
||||
-/
|
||||
variable {d : ℕ}
|
||||
variable {d : ℕ}
|
||||
|
||||
open minkowskiMetric in
|
||||
/-- The Lorentz group is the subset of matrices which preserve the minkowski metric. -/
|
||||
|
@ -74,7 +74,7 @@ lemma mem_iff_on_right : Λ ∈ LorentzGroup d ↔
|
|||
rw [← dual_mulVec_right, mulVec_mulVec]
|
||||
exact h x y
|
||||
|
||||
lemma mem_iff_dual_mul_self : Λ ∈ LorentzGroup d ↔ dual Λ * Λ = 1 := by
|
||||
lemma mem_iff_dual_mul_self : Λ ∈ LorentzGroup d ↔ dual Λ * Λ = 1 := by
|
||||
rw [mem_iff_on_right, matrix_eq_id_iff]
|
||||
exact forall_comm
|
||||
|
||||
|
@ -145,7 +145,7 @@ namespace LorentzGroup
|
|||
|
||||
open minkowskiMetric
|
||||
|
||||
variable {Λ Λ' : LorentzGroup d}
|
||||
variable {Λ Λ' : LorentzGroup d}
|
||||
|
||||
lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
|
||||
refine (inv_eq_left_inv ?h).symm
|
||||
|
@ -172,7 +172,7 @@ def toGL : LorentzGroup d →* GL (Fin 1 ⊕ Fin d) ℝ where
|
|||
map_one' := by
|
||||
simp
|
||||
rfl
|
||||
map_mul' x y := by
|
||||
map_mul' x y := by
|
||||
simp only [lorentzGroupIsGroup, _root_.mul_inv_rev, coe_inv]
|
||||
ext
|
||||
rfl
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue