feat: Expansion lemmas for units
This commit is contained in:
parent
28e0e4d610
commit
14377da3d8
4 changed files with 131 additions and 3 deletions
|
@ -28,6 +28,14 @@ open CategoryTheory.MonoidalCategory
|
|||
def leftAltLeftUnitVal : (leftHanded ⊗ altLeftHanded).V :=
|
||||
leftAltLeftToMatrix.symm 1
|
||||
|
||||
/-- Expansion of `leftAltLeftUnitVal` into the basis. -/
|
||||
lemma leftAltLeftUnitVal_expand_tmul : leftAltLeftUnitVal =
|
||||
leftBasis 0 ⊗ₜ[ℂ] altLeftBasis 0 + leftBasis 1 ⊗ₜ[ℂ] altLeftBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, leftAltLeftUnitVal, Fin.isValue]
|
||||
erw [leftAltLeftToMatrix_symm_expand_tmul]
|
||||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||||
|
||||
/-- The left-alt-left unit `δᵃₐ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ altLeftHanded `,
|
||||
manifesting the invariance under the `SL(2,ℂ)` action. -/
|
||||
def leftAltLeftUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ altLeftHanded where
|
||||
|
@ -55,10 +63,23 @@ def leftAltLeftUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ altLeftHanded
|
|||
apply congrArg
|
||||
simp
|
||||
|
||||
lemma leftAltLeftUnit_apply_one : leftAltLeftUnit.hom (1 : ℂ) = leftAltLeftUnitVal := by
|
||||
change leftAltLeftUnit.hom.toFun (1 : ℂ) = leftAltLeftUnitVal
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
leftAltLeftUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
/-- The alt-left-left unit `δₐᵃ` as an element of `(altLeftHanded ⊗ leftHanded).V`. -/
|
||||
def altLeftLeftUnitVal : (altLeftHanded ⊗ leftHanded).V :=
|
||||
altLeftLeftToMatrix.symm 1
|
||||
|
||||
/-- Expansion of `altLeftLeftUnitVal` into the basis. -/
|
||||
lemma altLeftLeftUnitVal_expand_tmul : altLeftLeftUnitVal =
|
||||
altLeftBasis 0 ⊗ₜ[ℂ] leftBasis 0 + altLeftBasis 1 ⊗ₜ[ℂ] leftBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, altLeftLeftUnitVal, Fin.isValue]
|
||||
erw [altLeftLeftToMatrix_symm_expand_tmul]
|
||||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||||
|
||||
/-- The alt-left-left unit `δₐᵃ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ leftHanded `,
|
||||
manifesting the invariance under the `SL(2,ℂ)` action. -/
|
||||
def altLeftLeftUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ leftHanded where
|
||||
|
@ -87,11 +108,24 @@ def altLeftLeftUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ leftHanded
|
|||
simp only [mul_one, ← transpose_mul, SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq,
|
||||
one_ne_zero, not_false_eq_true, mul_nonsing_inv, transpose_one]
|
||||
|
||||
lemma altLeftLeftUnit_apply_one : altLeftLeftUnit.hom (1 : ℂ) = altLeftLeftUnitVal := by
|
||||
change altLeftLeftUnit.hom.toFun (1 : ℂ) = altLeftLeftUnitVal
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
altLeftLeftUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
/-- The right-alt-right unit `δ^{dot a}_{dot a}` as an element of
|
||||
`(rightHanded ⊗ altRightHanded).V`. -/
|
||||
def rightAltRightUnitVal : (rightHanded ⊗ altRightHanded).V :=
|
||||
rightAltRightToMatrix.symm 1
|
||||
|
||||
/-- Expansion of `rightAltRightUnitVal` into the basis. -/
|
||||
lemma rightAltRightUnitVal_expand_tmul : rightAltRightUnitVal =
|
||||
rightBasis 0 ⊗ₜ[ℂ] altRightBasis 0 + rightBasis 1 ⊗ₜ[ℂ] altRightBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, rightAltRightUnitVal, Fin.isValue]
|
||||
erw [rightAltRightToMatrix_symm_expand_tmul]
|
||||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||||
|
||||
/-- The right-alt-right unit `δ^{dot a}_{dot a}` as a morphism
|
||||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ altRightHanded`, manifesting
|
||||
the invariance under the `SL(2,ℂ)` action. -/
|
||||
|
@ -126,11 +160,24 @@ def rightAltRightUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ altRightHa
|
|||
rw [@conjTranspose_nonsing_inv]
|
||||
simp
|
||||
|
||||
lemma rightAltRightUnit_apply_one : rightAltRightUnit.hom (1 : ℂ) = rightAltRightUnitVal := by
|
||||
change rightAltRightUnit.hom.toFun (1 : ℂ) = rightAltRightUnitVal
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
rightAltRightUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
/-- The alt-right-right unit `δ_{dot a}^{dot a}` as an element of
|
||||
`(rightHanded ⊗ altRightHanded).V`. -/
|
||||
def altRightRightUnitVal : (altRightHanded ⊗ rightHanded).V :=
|
||||
altRightRightToMatrix.symm 1
|
||||
|
||||
/-- Expansion of `altRightRightUnitVal` into the basis. -/
|
||||
lemma altRightRightUnitVal_expand_tmul : altRightRightUnitVal =
|
||||
altRightBasis 0 ⊗ₜ[ℂ] rightBasis 0 + altRightBasis 1 ⊗ₜ[ℂ] rightBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, altRightRightUnitVal, Fin.isValue]
|
||||
erw [altRightRightToMatrix_symm_expand_tmul]
|
||||
simp only [Fin.sum_univ_two, Fin.isValue, one_apply_eq, one_smul, ne_eq, zero_ne_one,
|
||||
not_false_eq_true, one_apply_ne, zero_smul, add_zero, one_ne_zero, zero_add]
|
||||
|
||||
/-- The alt-right-right unit `δ_{dot a}^{dot a}` as a morphism
|
||||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ rightHanded`, manifesting
|
||||
the invariance under the `SL(2,ℂ)` action. -/
|
||||
|
@ -163,5 +210,22 @@ def altRightRightUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ rightHa
|
|||
rw [@conjTranspose_nonsing_inv]
|
||||
simp
|
||||
|
||||
lemma altRightRightUnit_apply_one : altRightRightUnit.hom (1 : ℂ) = altRightRightUnitVal := by
|
||||
change altRightRightUnit.hom.toFun (1 : ℂ) = altRightRightUnitVal
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
altRightRightUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
/-!
|
||||
|
||||
## Contraction of the units
|
||||
|
||||
-/
|
||||
|
||||
lemma contr_leftAltLeftUnitVal (x : leftHanded) :
|
||||
(λ_ leftHanded).hom.hom
|
||||
(((leftAltContraction) ▷ leftHanded).hom
|
||||
((α_ _ _ leftHanded).inv.hom
|
||||
(x ⊗ₜ[ℂ] altLeftLeftUnit.hom (1 : ℂ)))) = x := by
|
||||
sorry
|
||||
end
|
||||
end Fermion
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue