refactor: Rename ofCrAnState and ofCrAnList
This commit is contained in:
parent
93d06895c6
commit
171e80fc04
11 changed files with 601 additions and 601 deletions
|
@ -19,13 +19,13 @@ open FieldStatistic
|
|||
namespace FieldOpAlgebra
|
||||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
(φs1 φs2 : List 𝓕.CrAnStates) (h :
|
||||
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
|
||||
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
|
||||
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2) :
|
||||
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca *
|
||||
ofCrAnList φs2) = 0 := by
|
||||
ι 𝓣ᶠ(ofCrAnListF φs1 * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca *
|
||||
ofCrAnListF φs2) = 0 := by
|
||||
let l1 :=
|
||||
(List.takeWhile (fun c => ¬ crAnTimeOrderRel φ1 c)
|
||||
((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
|
||||
|
@ -33,24 +33,24 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3
|
|||
let l2 := (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ crAnTimeOrderRel c φ1) φs2)
|
||||
++ (List.filter (fun c => crAnTimeOrderRel φ1 c ∧ ¬ crAnTimeOrderRel c φ1)
|
||||
((φs1 ++ φs2).insertionSort crAnTimeOrderRel))
|
||||
have h123 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)) =
|
||||
have h123 : ι 𝓣ᶠ(ofCrAnListF (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)) =
|
||||
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
|
||||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ2, φ3]) * ι (ofCrAnList l2)) := by
|
||||
• (ι (ofCrAnListF l1) * ι (ofCrAnListF [φ1, φ2, φ3]) * ι (ofCrAnListF l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ2, φ3] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ1 :: φ2 :: φ3 :: φs2 = φs1 ++ [φ1, φ2, φ3] ++ φs2
|
||||
rw [timeOrderF_ofCrAnListF, show φs1 ++ φ1 :: φ2 :: φ3 :: φs2 = φs1 ++ [φ1, φ2, φ3] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.append_assoc, List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
have h132 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ1 :: φ3 :: φ2 :: φs2)) =
|
||||
Bool.decide_and, ofCrAnListF_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
have h132 : ι 𝓣ᶠ(ofCrAnListF (φs1 ++ φ1 :: φ3 :: φ2 :: φs2)) =
|
||||
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
|
||||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ3, φ2]) * ι (ofCrAnList l2)) := by
|
||||
• (ι (ofCrAnListF l1) * ι (ofCrAnListF [φ1, φ3, φ2]) * ι (ofCrAnListF l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ3, φ2] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ1 :: φ3 :: φ2 :: φs2 = φs1 ++ [φ1, φ3, φ2] ++ φs2
|
||||
rw [timeOrderF_ofCrAnListF, show φs1 ++ φ1 :: φ3 :: φ2 :: φs2 = φs1 ++ [φ1, φ3, φ2] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
Bool.decide_and, ofCrAnListF_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
congr 1
|
||||
have hp : List.Perm [φ1, φ3, φ2] [φ1, φ2, φ3] := by
|
||||
refine List.Perm.cons φ1 ?_
|
||||
|
@ -67,15 +67,15 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3
|
|||
refine List.Perm.trans (l₂ := [φ2, φ1, φ3]) ?_ ?_
|
||||
refine List.Perm.cons φ2 (List.Perm.swap φ1 φ3 [])
|
||||
exact List.Perm.swap φ1 φ2 [φ3]
|
||||
have h231 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ2 :: φ3 :: φ1 :: φs2)) =
|
||||
have h231 : ι 𝓣ᶠ(ofCrAnListF (φs1 ++ φ2 :: φ3 :: φ1 :: φs2)) =
|
||||
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
|
||||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ2, φ3, φ1]) * ι (ofCrAnList l2)) := by
|
||||
• (ι (ofCrAnListF l1) * ι (ofCrAnListF [φ2, φ3, φ1]) * ι (ofCrAnListF l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ2, φ3, φ1] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ2 :: φ3 :: φ1 :: φs2 = φs1 ++ [φ2, φ3, φ1] ++ φs2
|
||||
rw [timeOrderF_ofCrAnListF, show φs1 ++ φ2 :: φ3 :: φ1 :: φs2 = φs1 ++ [φ2, φ3, φ1] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
Bool.decide_and, ofCrAnListF_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
congr 1
|
||||
rw [crAnTimeOrderSign, Wick.koszulSign_perm_eq _ _ φ1 _ _ _ _ _ hp231, ← crAnTimeOrderSign]
|
||||
· simp
|
||||
|
@ -85,15 +85,15 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3
|
|||
all_goals
|
||||
subst hφ4
|
||||
simp_all
|
||||
have h321 : ι 𝓣ᶠ(ofCrAnList (φs1 ++ φ3 :: φ2 :: φ1 :: φs2)) =
|
||||
have h321 : ι 𝓣ᶠ(ofCrAnListF (φs1 ++ φ3 :: φ2 :: φ1 :: φs2)) =
|
||||
crAnTimeOrderSign (φs1 ++ φ1 :: φ2 :: φ3 :: φs2)
|
||||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ3, φ2, φ1]) * ι (ofCrAnList l2)) := by
|
||||
• (ι (ofCrAnListF l1) * ι (ofCrAnListF [φ3, φ2, φ1]) * ι (ofCrAnListF l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ3, φ2, φ1] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ3 :: φ2 :: φ1 :: φs2 = φs1 ++ [φ3, φ2, φ1] ++ φs2
|
||||
rw [timeOrderF_ofCrAnListF, show φs1 ++ φ3 :: φ2 :: φ1 :: φs2 = φs1 ++ [φ3, φ2, φ1] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
Bool.decide_and, ofCrAnListF_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
congr 1
|
||||
have hp : List.Perm [φ3, φ2, φ1] [φ1, φ2, φ3] := by
|
||||
refine List.Perm.trans ?_ hp231
|
||||
|
@ -106,12 +106,12 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3
|
|||
all_goals
|
||||
subst hφ4
|
||||
simp_all
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||||
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp only [List.singleton_append, instCommGroup.eq_1, ofList_singleton, map_sub, map_smul]
|
||||
rw [superCommuteF_ofCrAnList_ofCrAnList, superCommuteF_ofCrAnList_ofCrAnList]
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp only [List.cons_append, List.nil_append, instCommGroup.eq_1, ofList_singleton, mul_sub, ←
|
||||
ofCrAnList_append, Algebra.mul_smul_comm, sub_mul, List.append_assoc, Algebra.smul_mul_assoc,
|
||||
ofCrAnListF_append, Algebra.mul_smul_comm, sub_mul, List.append_assoc, Algebra.smul_mul_assoc,
|
||||
map_sub, map_smul]
|
||||
rw [h123, h132, h231, h321]
|
||||
simp only [smul_smul]
|
||||
|
@ -127,49 +127,49 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3
|
|||
repeat rw [mul_assoc]
|
||||
rw [← mul_sub, ← mul_sub, ← mul_sub]
|
||||
rw [← sub_mul, ← sub_mul, ← sub_mul]
|
||||
trans ι (ofCrAnList l1) * ι [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca *
|
||||
ι (ofCrAnList l2)
|
||||
trans ι (ofCrAnListF l1) * ι [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca *
|
||||
ι (ofCrAnListF l2)
|
||||
rw [mul_assoc]
|
||||
congr
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||||
rw [superCommuteF_ofCrAnList_ofCrAnList]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp only [List.singleton_append, instCommGroup.eq_1, ofList_singleton, map_sub, map_smul]
|
||||
rw [superCommuteF_ofCrAnList_ofCrAnList, superCommuteF_ofCrAnList_ofCrAnList]
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp only [List.cons_append, List.nil_append, instCommGroup.eq_1, ofList_singleton, map_sub,
|
||||
map_smul, smul_sub]
|
||||
simp_all
|
||||
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
(φs1 φs2 : List 𝓕.CrAnStates) :
|
||||
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ofCrAnList φs2)
|
||||
ι 𝓣ᶠ(ofCrAnListF φs1 * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * ofCrAnListF φs2)
|
||||
= 0 := by
|
||||
by_cases h :
|
||||
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
|
||||
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
|
||||
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2
|
||||
· exact ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList φs1 φs2 h
|
||||
· exact ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF φs1 φs2 h
|
||||
· rw [timeOrderF_timeOrderF_mid]
|
||||
rw [timeOrderF_superCommuteF_ofCrAnState_superCommuteF_all_not_crAnTimeOrderRel _ _ _ h]
|
||||
rw [timeOrderF_superCommuteF_ofCrAnOpF_superCommuteF_all_not_crAnTimeOrderRel _ _ _ h]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0 := by
|
||||
let pb (b : 𝓕.FieldOpFreeAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0
|
||||
ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0 := by
|
||||
let pb (b : 𝓕.FieldOpFreeAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0
|
||||
change pb b (Basis.mem_span _ b)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
obtain ⟨φs, rfl⟩ := hx
|
||||
simp only [ofListBasis_eq_ofList, pb]
|
||||
let pa (a : 𝓕.FieldOpFreeAlgebra) (hc : a ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ofCrAnList φs) = 0
|
||||
let pa (a : 𝓕.FieldOpFreeAlgebra) (hc : a ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * ofCrAnListF φs) = 0
|
||||
change pa a (Basis.mem_span _ a)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
obtain ⟨φs', rfl⟩ := hx
|
||||
simp only [ofListBasis_eq_ofList, pa]
|
||||
exact ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnList φs' φs
|
||||
exact ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF φs' φs
|
||||
· simp [pa]
|
||||
· intro x y hx hy hpx hpy
|
||||
simp_all [pa,mul_add, add_mul]
|
||||
|
@ -183,28 +183,28 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
|||
|
||||
lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
||||
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) =
|
||||
ι ([ofCrAnState φ, ofCrAnState ψ]ₛca * 𝓣ᶠ(a * b)) := by
|
||||
let pb (b : 𝓕.FieldOpFreeAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) =
|
||||
ι ([ofCrAnState φ, ofCrAnState ψ]ₛca * 𝓣ᶠ(a * b))
|
||||
ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) =
|
||||
ι ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * 𝓣ᶠ(a * b)) := by
|
||||
let pb (b : 𝓕.FieldOpFreeAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) =
|
||||
ι ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * 𝓣ᶠ(a * b))
|
||||
change pb b (Basis.mem_span _ b)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
obtain ⟨φs, rfl⟩ := hx
|
||||
simp only [ofListBasis_eq_ofList, map_mul, pb]
|
||||
let pa (a : 𝓕.FieldOpFreeAlgebra) (hc : a ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * ofCrAnList φs) =
|
||||
ι ([ofCrAnState φ, ofCrAnState ψ]ₛca * 𝓣ᶠ(a* ofCrAnList φs))
|
||||
let pa (a : 𝓕.FieldOpFreeAlgebra) (hc : a ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * ofCrAnListF φs) =
|
||||
ι ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * 𝓣ᶠ(a* ofCrAnListF φs))
|
||||
change pa a (Basis.mem_span _ a)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
obtain ⟨φs', rfl⟩ := hx
|
||||
simp only [ofListBasis_eq_ofList, map_mul, pa]
|
||||
conv_lhs =>
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
||||
simp [mul_sub, sub_mul, ← ofCrAnList_append]
|
||||
rw [timeOrderF_ofCrAnList, timeOrderF_ofCrAnList]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [mul_sub, sub_mul, ← ofCrAnListF_append]
|
||||
rw [timeOrderF_ofCrAnListF, timeOrderF_ofCrAnListF]
|
||||
have h1 : crAnTimeOrderSign (φs' ++ φ :: ψ :: φs) =
|
||||
crAnTimeOrderSign (φs' ++ ψ :: φ :: φs) := by
|
||||
trans crAnTimeOrderSign (φs' ++ [φ, ψ] ++ φs)
|
||||
|
@ -223,7 +223,7 @@ lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
have h2 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ φs' [ψ, φ] φs
|
||||
(by simp_all)
|
||||
rw [crAnTimeOrderList, show φs' ++ ψ :: φ :: φs = φs' ++ [ψ, φ] ++ φs by simp, h2]
|
||||
repeat rw [ofCrAnList_append]
|
||||
repeat rw [ofCrAnListF_append]
|
||||
rw [smul_smul, mul_comm, ← smul_smul, ← smul_sub]
|
||||
rw [map_mul, map_mul, map_mul, map_mul, map_mul, map_mul, map_mul, map_mul]
|
||||
rw [← mul_smul_comm]
|
||||
|
@ -231,26 +231,26 @@ lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
rw [← mul_sub, ← mul_sub, mul_smul_comm, mul_smul_comm, ← smul_mul_assoc,
|
||||
← smul_mul_assoc]
|
||||
rw [← sub_mul]
|
||||
have h1 : (ι (ofCrAnList [φ, ψ]) -
|
||||
(exchangeSign (𝓕.crAnStatistics φ)) (𝓕.crAnStatistics ψ) • ι (ofCrAnList [ψ, φ])) =
|
||||
ι [ofCrAnState φ, ofCrAnState ψ]ₛca := by
|
||||
rw [superCommuteF_ofCrAnState_ofCrAnState]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append]
|
||||
have h1 : (ι (ofCrAnListF [φ, ψ]) -
|
||||
(exchangeSign (𝓕.crAnStatistics φ)) (𝓕.crAnStatistics ψ) • ι (ofCrAnListF [ψ, φ])) =
|
||||
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca := by
|
||||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append]
|
||||
simp only [instCommGroup.eq_1, List.singleton_append, Algebra.smul_mul_assoc, map_sub,
|
||||
map_smul]
|
||||
rw [← ofCrAnList_append]
|
||||
rw [← ofCrAnListF_append]
|
||||
simp
|
||||
rw [h1]
|
||||
have hc : ι ((superCommuteF (ofCrAnState φ)) (ofCrAnState ψ)) ∈
|
||||
have hc : ι ((superCommuteF (ofCrAnOpF φ)) (ofCrAnOpF ψ)) ∈
|
||||
Subalgebra.center ℂ 𝓕.FieldOpAlgebra := by
|
||||
apply ι_superCommuteF_ofCrAnState_ofCrAnState_mem_center
|
||||
apply ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_mem_center
|
||||
rw [Subalgebra.mem_center_iff] at hc
|
||||
repeat rw [← mul_assoc]
|
||||
rw [hc]
|
||||
repeat rw [mul_assoc]
|
||||
rw [smul_mul_assoc]
|
||||
rw [← map_mul, ← map_mul, ← map_mul, ← map_mul]
|
||||
rw [← ofCrAnList_append, ← ofCrAnList_append, ← ofCrAnList_append, ← ofCrAnList_append]
|
||||
rw [← ofCrAnListF_append, ← ofCrAnListF_append, ← ofCrAnListF_append, ← ofCrAnListF_append]
|
||||
have h1 := insertionSort_of_takeWhile_filter 𝓕.crAnTimeOrderRel φ φs' φs
|
||||
simp only [decide_not, Bool.decide_and, List.append_assoc, List.cons_append,
|
||||
List.singleton_append, Algebra.mul_smul_comm, map_mul] at h1 ⊢
|
||||
|
@ -260,7 +260,7 @@ lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
· rw [ι_superCommuteF_of_diff_statistic hq]
|
||||
simp
|
||||
· rw [crAnTimeOrderSign, Wick.koszulSign_eq_rel_eq_stat _ _, ← crAnTimeOrderSign]
|
||||
rw [timeOrderF_ofCrAnList]
|
||||
rw [timeOrderF_ofCrAnListF]
|
||||
simp only [map_smul, Algebra.mul_smul_comm]
|
||||
simp only [List.nil_append]
|
||||
exact hψφ
|
||||
|
@ -279,18 +279,18 @@ lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
|
||||
lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnStates}
|
||||
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) = 0 := by
|
||||
ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) = 0 := by
|
||||
rw [timeOrderF_timeOrderF_mid]
|
||||
have hφψ : ¬ (crAnTimeOrderRel φ ψ) ∨ ¬ (crAnTimeOrderRel ψ φ) := by
|
||||
exact Decidable.not_and_iff_or_not.mp hφψ
|
||||
rcases hφψ with hφψ | hφψ
|
||||
· rw [timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
|
||||
· rw [timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel]
|
||||
simp_all only [false_and, not_false_eq_true, false_or, mul_zero, zero_mul, map_zero]
|
||||
simp_all
|
||||
· rw [superCommuteF_ofCrAnState_ofCrAnState_symm]
|
||||
· rw [superCommuteF_ofCrAnOpF_ofCrAnOpF_symm]
|
||||
simp only [instCommGroup.eq_1, neg_smul, map_neg, map_smul, mul_neg, Algebra.mul_smul_comm,
|
||||
neg_mul, Algebra.smul_mul_assoc, neg_eq_zero, smul_eq_zero]
|
||||
rw [timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
|
||||
rw [timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel]
|
||||
simp only [mul_zero, zero_mul, map_zero, or_true]
|
||||
simp_all
|
||||
|
||||
|
@ -458,7 +458,7 @@ lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
|
|||
rw [ofCrAnFieldOp, ofCrAnFieldOp]
|
||||
rw [superCommute_eq_ι_superCommuteF]
|
||||
rw [timeOrder_eq_ι_timeOrderF]
|
||||
trans ι (timeOrderF (1 * (superCommuteF (ofCrAnState φ)) (ofCrAnState ψ) * 1))
|
||||
trans ι (timeOrderF (1 * (superCommuteF (ofCrAnOpF φ)) (ofCrAnOpF ψ) * 1))
|
||||
simp only [one_mul, mul_one]
|
||||
rw [ι_timeOrderF_superCommuteF_neq_time]
|
||||
exact hφψ
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue