chore: Bump to 4.11.0

This commit is contained in:
jstoobysmith 2024-09-04 06:28:46 -04:00
parent b6162217b7
commit 17f09022db
48 changed files with 404 additions and 137 deletions

View file

@ -50,6 +50,7 @@ section charges
variable {S : (PureU1 n.succ).Charges} {A : (PureU1 n.succ).LinSols}
variable (hS : ConstAbsSorted S) (hA : ConstAbsSorted A.val)
include hS in
lemma lt_eq {k i : Fin n.succ} (hk : S k ≤ 0) (hik : i ≤ k) : S i = S k := by
have hSS := hS.2 i k hik
have ht := hS.1 i k
@ -58,11 +59,13 @@ lemma lt_eq {k i : Fin n.succ} (hk : S k ≤ 0) (hik : i ≤ k) : S i = S k := b
· exact h
· linarith
include hS in
lemma val_le_zero {i : Fin n.succ} (hi : S i ≤ 0) : S i = S (0 : Fin n.succ) := by
symm
apply lt_eq hS hi
exact Fin.zero_le i
include hS in
lemma gt_eq {k i: Fin n.succ} (hk : 0 ≤ S k) (hik : k ≤ i) : S i = S k := by
have hSS := hS.2 k i hik
have ht := hS.1 i k
@ -71,10 +74,12 @@ lemma gt_eq {k i: Fin n.succ} (hk : 0 ≤ S k) (hik : k ≤ i) : S i = S k := by
· exact h
· linarith
include hS in
lemma zero_gt (h0 : 0 ≤ S (0 : Fin n.succ)) (i : Fin n.succ) : S (0 : Fin n.succ) = S i := by
symm
refine gt_eq hS h0 (Fin.zero_le i)
include hS in
lemma opposite_signs_eq_neg {i j : Fin n.succ} (hi : S i ≤ 0) (hj : 0 ≤ S j) : S i = - S j := by
have hSS := hS.1 i j
rw [sq_eq_sq_iff_eq_or_eq_neg] at hSS
@ -83,6 +88,7 @@ lemma opposite_signs_eq_neg {i j : Fin n.succ} (hi : S i ≤ 0) (hj : 0 ≤ S j)
linarith
· exact h
include hS in
lemma is_zero (h0 : S (0 : Fin n.succ) = 0) : S = 0 := by
funext i
have ht := hS.1 i (0 : Fin n.succ)
@ -96,9 +102,11 @@ is defined as a element of `k ∈ Fin n` such that `S k.castSucc` and `S k.succ`
@[simp]
def Boundary (S : (PureU1 n.succ).Charges) (k : Fin n) : Prop := S k.castSucc < 0 ∧ 0 < S k.succ
include hS in
lemma boundary_castSucc {k : Fin n} (hk : Boundary S k) : S k.castSucc = S (0 : Fin n.succ) :=
(lt_eq hS (le_of_lt hk.left) (Fin.zero_le k.castSucc : 0 ≤ k.castSucc)).symm
include hS in
lemma boundary_succ {k : Fin n} (hk : Boundary S k) : S k.succ = - S (0 : Fin n.succ) := by
have hn := boundary_castSucc hS hk
rw [opposite_signs_eq_neg hS (le_of_lt hk.left) (le_of_lt hk.right)] at hn
@ -115,6 +123,7 @@ lemma boundary_accGrav' (k : Fin n) : accGrav n.succ S =
simp only [Fin.val_succ, mem_univ, RelIso.coe_fn_toEquiv]
· exact fun _ _ => rfl
include hS in
lemma boundary_accGrav'' (k : Fin n) (hk : Boundary S k) :
accGrav n.succ S = (2 * ↑↑k + 1 - ↑n) * S (0 : Fin n.succ) := by
rw [boundary_accGrav' k]
@ -136,6 +145,7 @@ lemma boundary_accGrav'' (k : Fin n) (hk : Boundary S k) :
def HasBoundary (S : (PureU1 n.succ).Charges) : Prop :=
∃ (k : Fin n), Boundary S k
include hS in
lemma not_hasBoundary_zero_le (hnot : ¬ (HasBoundary S)) (h0 : S (0 : Fin n.succ) < 0) :
∀ i, S (0 : Fin n.succ) = S i := by
intro ⟨i, hi⟩
@ -148,6 +158,7 @@ lemma not_hasBoundary_zero_le (hnot : ¬ (HasBoundary S)) (h0 : S (0 : Fin n.suc
erw [← hii] at hnott
exact (val_le_zero hS (hnott h0)).symm
include hS in
lemma not_hasBoundry_zero (hnot : ¬ (HasBoundary S)) (i : Fin n.succ) :
S (0 : Fin n.succ) = S i := by
by_cases hi : S (0 : Fin n.succ) < 0
@ -155,10 +166,12 @@ lemma not_hasBoundry_zero (hnot : ¬ (HasBoundary S)) (i : Fin n.succ) :
· simp at hi
exact zero_gt hS hi i
include hS in
lemma not_hasBoundary_grav (hnot : ¬ (HasBoundary S)) :
accGrav n.succ S = n.succ * S (0 : Fin n.succ) := by
simp [accGrav, ← not_hasBoundry_zero hS hnot]
include hA in
lemma AFL_hasBoundary (h : A.val (0 : Fin n.succ) ≠ 0) : HasBoundary A.val := by
by_contra hn
have h0 := not_hasBoundary_grav hA hn

View file

@ -125,7 +125,7 @@ theorem generic_case {S : (PureU1 (2 * n.succ)).Sols} (h : GenericCase S) :
rw [parameterizationAsLinear_val]
change S.val = _ • (_ • P g + _• P! f)
rw [anomalyFree_param _ _ hS]
rw [neg_neg, ← smul_add, smul_smul, inv_mul_cancel, one_smul]
rw [neg_neg, ← smul_add, smul_smul, inv_mul_cancel, one_smul]
· exact hS
· have h := h g f hS
rw [anomalyFree_param _ _ hS] at h

View file

@ -126,7 +126,7 @@ theorem generic_case {S : (PureU1 (2 * n.succ + 1)).Sols} (h : GenericCase S) :
rw [parameterizationAsLinear_val]
change S.val = _ • (_ • P g + _• P! f)
rw [anomalyFree_param _ _ hS]
rw [neg_neg, ← smul_add, smul_smul, inv_mul_cancel, one_smul]
rw [neg_neg, ← smul_add, smul_smul, inv_mul_cancel, one_smul]
· exact hS
· have h := h g f hS
rw [anomalyFree_param _ _ hS] at h