chore: Bump to 4.11.0
This commit is contained in:
parent
b6162217b7
commit
17f09022db
48 changed files with 404 additions and 137 deletions
|
@ -73,12 +73,12 @@ lemma ud_us_neq_zero_iff_ub_neq_one (V : CKMMatrix) :
|
|||
refine Iff.intro (fun h h1 => ?_) (fun h => ?_)
|
||||
· rw [h1] at h2
|
||||
simp at h2
|
||||
rw [add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)] at h2
|
||||
rw [add_eq_zero_iff_of_nonneg (sq_nonneg _) (sq_nonneg _)] at h2
|
||||
simp_all
|
||||
· by_contra hn
|
||||
rw [not_or] at hn
|
||||
simp_all only [ne_eq, Decidable.not_not, map_zero, OfNat.ofNat_ne_zero, not_false_eq_true,
|
||||
zero_pow, add_zero, zero_add, sq_eq_one_iff, false_or, neg_eq_self_iff, one_ne_zero]
|
||||
zero_pow, add_zero, zero_add, sq_eq_one_iff, false_or]
|
||||
have h1 := Complex.abs.nonneg [V]ub
|
||||
rw [h2] at h1
|
||||
refine (?_ : ¬ 0 ≤ (-1 : ℝ)) h1
|
||||
|
@ -290,7 +290,7 @@ lemma cb_eq_zero_of_ud_us_zero {V : CKMMatrix} (h : [V]ud = 0 ∧ [V]us = 0) :
|
|||
simp [h] at h1
|
||||
rw [add_assoc] at h1
|
||||
simp at h1
|
||||
rw [add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)] at h1
|
||||
rw [add_eq_zero_iff_of_nonneg (sq_nonneg _) (sq_nonneg _)] at h1
|
||||
simp at h1
|
||||
exact h1.1
|
||||
|
||||
|
@ -298,12 +298,12 @@ lemma cs_of_ud_us_zero {V : CKMMatrix} (ha : ¬ ([V]ud ≠ 0 ∨ [V]us ≠ 0)) :
|
|||
VcsAbs ⟦V⟧ = √(1 - VcdAbs ⟦V⟧ ^ 2) := by
|
||||
have h1 := snd_row_normalized_abs V
|
||||
symm
|
||||
rw [Real.sqrt_eq_iff_sq_eq]
|
||||
rw [Real.sqrt_eq_iff_eq_sq]
|
||||
· simp [not_or] at ha
|
||||
rw [cb_eq_zero_of_ud_us_zero ha] at h1
|
||||
simp at h1
|
||||
simp [VAbs]
|
||||
linear_combination h1
|
||||
simp only [VcdAbs, VAbs, VAbs', Fin.isValue, Quotient.lift_mk, VcsAbs]
|
||||
linear_combination ← h1
|
||||
· simp only [VcdAbs, Fin.isValue, sub_nonneg, sq_le_one_iff_abs_le_one]
|
||||
rw [@abs_le]
|
||||
have h1 := VAbs_leq_one 1 0 ⟦V⟧
|
||||
|
@ -325,13 +325,13 @@ lemma cb_tb_neq_zero_iff_ub_neq_one (V : CKMMatrix) :
|
|||
simp at h2
|
||||
have h2 : Complex.abs (V.1 1 2) ^ 2 + Complex.abs (V.1 2 2) ^ 2 = 0 := by
|
||||
linear_combination h2
|
||||
rw [add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)] at h2
|
||||
rw [add_eq_zero_iff_of_nonneg (sq_nonneg _) (sq_nonneg _)] at h2
|
||||
simp_all
|
||||
· by_contra hn
|
||||
rw [not_or] at hn
|
||||
simp at hn
|
||||
simp_all only [map_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero,
|
||||
sq_eq_one_iff, false_or, neg_eq_self_iff, one_ne_zero]
|
||||
sq_eq_one_iff, false_or, one_ne_zero]
|
||||
have h1 := Complex.abs.nonneg [V]ub
|
||||
rw [h2] at h1
|
||||
have h2 : ¬ 0 ≤ (-1 : ℝ) := by simp
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue