feat: Time dependent Wick theorem. (#274)
feat: Proof of the time-dependent Wick's theorem
This commit is contained in:
parent
4d43698b3c
commit
17f84b7153
53 changed files with 8563 additions and 3329 deletions
|
@ -7,30 +7,30 @@ import HepLean.PerturbationTheory.FieldStruct.Basic
|
|||
import HepLean.PerturbationTheory.CreateAnnihilate
|
||||
/-!
|
||||
|
||||
# Creation and annihilation parts of fields
|
||||
# Creation and annihlation parts of fields
|
||||
|
||||
-/
|
||||
|
||||
namespace FieldStruct
|
||||
variable (𝓕 : FieldStruct)
|
||||
|
||||
/-- To each state the specification of the type of creation and annihilation parts.
|
||||
For asymptotic states there is only one allowed part, whilst for position states
|
||||
/-- To each state the specificaition of the type of creation and annihlation parts.
|
||||
For asymptotic staes there is only one allowed part, whilst for position states
|
||||
there is two. -/
|
||||
def statesToCreateAnnihilateType : 𝓕.States → Type
|
||||
def statesToCrAnType : 𝓕.States → Type
|
||||
| States.negAsymp _ => Unit
|
||||
| States.position _ => CreateAnnihilate
|
||||
| States.posAsymp _ => Unit
|
||||
|
||||
/-- The instance of a finite type on `𝓕.statesToCreateAnnihilateType i`. -/
|
||||
instance : ∀ i, Fintype (𝓕.statesToCreateAnnihilateType i) := fun i =>
|
||||
instance : ∀ i, Fintype (𝓕.statesToCrAnType i) := fun i =>
|
||||
match i with
|
||||
| States.negAsymp _ => inferInstanceAs (Fintype Unit)
|
||||
| States.position _ => inferInstanceAs (Fintype CreateAnnihilate)
|
||||
| States.posAsymp _ => inferInstanceAs (Fintype Unit)
|
||||
|
||||
/-- The instance of a decidable equality on `𝓕.statesToCreateAnnihilateType i`. -/
|
||||
instance : ∀ i, DecidableEq (𝓕.statesToCreateAnnihilateType i) := fun i =>
|
||||
instance : ∀ i, DecidableEq (𝓕.statesToCrAnType i) := fun i =>
|
||||
match i with
|
||||
| States.negAsymp _ => inferInstanceAs (DecidableEq Unit)
|
||||
| States.position _ => inferInstanceAs (DecidableEq CreateAnnihilate)
|
||||
|
@ -39,40 +39,44 @@ instance : ∀ i, DecidableEq (𝓕.statesToCreateAnnihilateType i) := fun i =>
|
|||
/-- The equivalence between `𝓕.statesToCreateAnnihilateType i` and
|
||||
`𝓕.statesToCreateAnnihilateType j` from an equality `i = j`. -/
|
||||
def statesToCreateAnnihilateTypeCongr : {i j : 𝓕.States} → i = j →
|
||||
𝓕.statesToCreateAnnihilateType i ≃ 𝓕.statesToCreateAnnihilateType j
|
||||
𝓕.statesToCrAnType i ≃ 𝓕.statesToCrAnType j
|
||||
| _, _, rfl => Equiv.refl _
|
||||
|
||||
/-- A creation and annihilation state is a state plus an valid specification of the
|
||||
/-- A creation and annihlation state is a state plus an valid specification of the
|
||||
creation or annihliation part of that state. (For asympotic states there is only one valid
|
||||
choice). -/
|
||||
def CreateAnnihilateStates : Type := Σ (s : 𝓕.States), 𝓕.statesToCreateAnnihilateType s
|
||||
def CrAnStates : Type := Σ (s : 𝓕.States), 𝓕.statesToCrAnType s
|
||||
|
||||
/-- The map from creation and annihilation states to their underlying states. -/
|
||||
def createAnnihilateStatesToStates : 𝓕.CreateAnnihilateStates → 𝓕.States := Sigma.fst
|
||||
/-- The map from creation and annihlation states to their underlying states. -/
|
||||
def crAnStatesToStates : 𝓕.CrAnStates → 𝓕.States := Sigma.fst
|
||||
|
||||
@[simp]
|
||||
lemma createAnnihilateStatesToStates_prod (s : 𝓕.States) (t : 𝓕.statesToCreateAnnihilateType s) :
|
||||
𝓕.createAnnihilateStatesToStates ⟨s, t⟩ = s := rfl
|
||||
lemma crAnStatesToStates_prod (s : 𝓕.States) (t : 𝓕.statesToCrAnType s) :
|
||||
𝓕.crAnStatesToStates ⟨s, t⟩ = s := rfl
|
||||
|
||||
/-- The map from creation and annihilation states to the type `CreateAnnihilate`
|
||||
/-- The map from creation and annihlation states to the type `CreateAnnihilate`
|
||||
specifying if a state is a creation or an annihilation state. -/
|
||||
def createAnnihlateStatesToCreateAnnihilate : 𝓕.CreateAnnihilateStates → CreateAnnihilate
|
||||
def crAnStatesToCreateAnnihilate : 𝓕.CrAnStates → CreateAnnihilate
|
||||
| ⟨States.negAsymp _, _⟩ => CreateAnnihilate.create
|
||||
| ⟨States.position _, CreateAnnihilate.create⟩ => CreateAnnihilate.create
|
||||
| ⟨States.position _, CreateAnnihilate.annihilate⟩ => CreateAnnihilate.annihilate
|
||||
| ⟨States.posAsymp _, _⟩ => CreateAnnihilate.annihilate
|
||||
|
||||
/-- The normal ordering on creation and annihilation states. -/
|
||||
def normalOrder : 𝓕.CreateAnnihilateStates → 𝓕.CreateAnnihilateStates → Prop :=
|
||||
fun a b => CreateAnnihilate.normalOrder (𝓕.createAnnihlateStatesToCreateAnnihilate a)
|
||||
(𝓕.createAnnihlateStatesToCreateAnnihilate b)
|
||||
/-- Takes a `CrAnStates` state to its corresponding fields statistic (bosonic or fermionic). -/
|
||||
def crAnStatistics : 𝓕.CrAnStates → FieldStatistic :=
|
||||
𝓕.statesStatistic ∘ 𝓕.crAnStatesToStates
|
||||
|
||||
/-- Normal ordering is total. -/
|
||||
instance : IsTotal 𝓕.CreateAnnihilateStates 𝓕.normalOrder where
|
||||
total _ _ := total_of CreateAnnihilate.normalOrder _ _
|
||||
/-- The field statistic of a `CrAnState`. -/
|
||||
scoped[FieldStruct] notation 𝓕 "|>ₛ" φ =>
|
||||
(crAnStatistics 𝓕) φ
|
||||
|
||||
/-- Normal ordering is transitive. -/
|
||||
instance : IsTrans 𝓕.CreateAnnihilateStates 𝓕.normalOrder where
|
||||
trans _ _ _ := fun h h' => IsTrans.trans (α := CreateAnnihilate) _ _ _ h h'
|
||||
/-- The field statistic of a list of `CrAnState`s. -/
|
||||
scoped[FieldStruct] notation 𝓕 "|>ₛ" φ => FieldStatistic.ofList
|
||||
(crAnStatistics 𝓕) φ
|
||||
|
||||
/-- The `CreateAnnihilate` value of a `CrAnState`s, i.e. whether it is a creation or
|
||||
annihilation operator. -/
|
||||
scoped[FieldStruct] infixl:80 "|>ᶜ" =>
|
||||
crAnStatesToCreateAnnihilate
|
||||
|
||||
end FieldStruct
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue