feat: Time dependent Wick theorem. (#274)
feat: Proof of the time-dependent Wick's theorem
This commit is contained in:
parent
4d43698b3c
commit
17f84b7153
53 changed files with 8563 additions and 3329 deletions
160
HepLean/PerturbationTheory/WickContraction/Erase.lean
Normal file
160
HepLean/PerturbationTheory/WickContraction/Erase.lean
Normal file
|
@ -0,0 +1,160 @@
|
|||
/-
|
||||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.WickContraction.Uncontracted
|
||||
/-!
|
||||
|
||||
# Erasing an element from a contraction
|
||||
|
||||
-/
|
||||
|
||||
open FieldStruct
|
||||
variable {𝓕 : FieldStruct}
|
||||
|
||||
namespace WickContraction
|
||||
variable {n : ℕ} (c : WickContraction n)
|
||||
open HepLean.List
|
||||
open HepLean.Fin
|
||||
|
||||
/-- Given a Wick contraction `WickContraction n.succ` and a `i : Fin n.succ` the
|
||||
Wick contraction associated with `n` obtained by removing `i`.
|
||||
If `i` is contracted with `j` in the new Wick contraction `j` will be uncontracted. -/
|
||||
def erase (c : WickContraction n.succ) (i : Fin n.succ) : WickContraction n := by
|
||||
refine ⟨Finset.filter (fun x => Finset.map i.succAboveEmb x ∈ c.1) Finset.univ, ?_, ?_⟩
|
||||
· intro a ha
|
||||
simpa using c.2.1 (Finset.map i.succAboveEmb a) (by simpa using ha)
|
||||
· intro a ha b hb
|
||||
simp only [Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, true_and] at ha hb
|
||||
rw [← Finset.disjoint_map i.succAboveEmb, ← (Finset.map_injective i.succAboveEmb).eq_iff]
|
||||
exact c.2.2 _ ha _ hb
|
||||
|
||||
lemma mem_erase_uncontracted_iff (c : WickContraction n.succ) (i : Fin n.succ) (j : Fin n) :
|
||||
j ∈ (c.erase i).uncontracted ↔
|
||||
i.succAbove j ∈ c.uncontracted ∨ c.getDual? (i.succAbove j) = some i := by
|
||||
rw [getDual?_eq_some_iff_mem]
|
||||
simp only [uncontracted, getDual?, erase, Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ,
|
||||
Finset.map_insert, Fin.succAboveEmb_apply, Finset.map_singleton, true_and]
|
||||
rw [Fin.find_eq_none_iff, Fin.find_eq_none_iff]
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
by_cases hi : {i.succAbove j, i} ∈ c.1
|
||||
· simp [hi]
|
||||
· apply Or.inl
|
||||
intro k
|
||||
by_cases hi' : k = i
|
||||
· subst hi'
|
||||
exact hi
|
||||
· simp only [← Fin.exists_succAbove_eq_iff] at hi'
|
||||
obtain ⟨z, hz⟩ := hi'
|
||||
subst hz
|
||||
exact h z
|
||||
· intro h
|
||||
intro k
|
||||
rcases h with h | h
|
||||
· exact h (i.succAbove k)
|
||||
· by_contra hn
|
||||
have hc := c.2.2 _ h _ hn
|
||||
simp only [Nat.succ_eq_add_one, Finset.disjoint_insert_right, Finset.mem_insert,
|
||||
Finset.mem_singleton, true_or, not_true_eq_false, Finset.disjoint_singleton_right, not_or,
|
||||
false_and, or_false] at hc
|
||||
have hi : i ∈ ({i.succAbove j, i.succAbove k} : Finset (Fin n.succ)) := by
|
||||
simp [← hc]
|
||||
simp only [Nat.succ_eq_add_one, Finset.mem_insert, Finset.mem_singleton] at hi
|
||||
rcases hi with hi | hi
|
||||
· exact False.elim (Fin.succAbove_ne _ _ hi.symm)
|
||||
· exact False.elim (Fin.succAbove_ne _ _ hi.symm)
|
||||
|
||||
lemma mem_not_eq_erase_of_isSome (c : WickContraction n.succ) (i : Fin n.succ)
|
||||
(h : (c.getDual? i).isSome) (ha : a ∈ c.1) (ha2 : a ≠ {i, (c.getDual? i).get h}) :
|
||||
∃ a', a' ∈ (c.erase i).1 ∧ a = Finset.map i.succAboveEmb a' := by
|
||||
have h2a := c.2.1 a ha
|
||||
rw [@Finset.card_eq_two] at h2a
|
||||
obtain ⟨x, y, hx,hy⟩ := h2a
|
||||
subst hy
|
||||
have hxn : ¬ x = i := by
|
||||
by_contra hx
|
||||
subst hx
|
||||
rw [← @getDual?_eq_some_iff_mem] at ha
|
||||
rw [(Option.get_of_mem h ha)] at ha2
|
||||
simp at ha2
|
||||
have hyn : ¬ y = i := by
|
||||
by_contra hy
|
||||
subst hy
|
||||
rw [@Finset.pair_comm] at ha
|
||||
rw [← @getDual?_eq_some_iff_mem] at ha
|
||||
rw [(Option.get_of_mem h ha)] at ha2
|
||||
simp [Finset.pair_comm] at ha2
|
||||
simp only [Nat.succ_eq_add_one, ← Fin.exists_succAbove_eq_iff] at hxn hyn
|
||||
obtain ⟨x', hx'⟩ := hxn
|
||||
obtain ⟨y', hy'⟩ := hyn
|
||||
use {x', y'}
|
||||
subst hx' hy'
|
||||
simp only [erase, Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, Finset.map_insert,
|
||||
Fin.succAboveEmb_apply, Finset.map_singleton, true_and, and_true]
|
||||
exact ha
|
||||
|
||||
lemma mem_not_eq_erase_of_isNone (c : WickContraction n.succ) (i : Fin n.succ)
|
||||
(h : (c.getDual? i).isNone) (ha : a ∈ c.1) :
|
||||
∃ a', a' ∈ (c.erase i).1 ∧ a = Finset.map i.succAboveEmb a' := by
|
||||
have h2a := c.2.1 a ha
|
||||
rw [@Finset.card_eq_two] at h2a
|
||||
obtain ⟨x, y, hx,hy⟩ := h2a
|
||||
subst hy
|
||||
have hi : i ∈ c.uncontracted := by
|
||||
simp only [Nat.succ_eq_add_one, uncontracted, Finset.mem_filter, Finset.mem_univ, true_and]
|
||||
simp_all only [Nat.succ_eq_add_one, Option.isNone_iff_eq_none, ne_eq]
|
||||
rw [@mem_uncontracted_iff_not_contracted] at hi
|
||||
have hxn : ¬ x = i := by
|
||||
by_contra hx
|
||||
subst hx
|
||||
exact hi {x, y} ha (by simp)
|
||||
have hyn : ¬ y = i := by
|
||||
by_contra hy
|
||||
subst hy
|
||||
exact hi {x, y} ha (by simp)
|
||||
simp only [Nat.succ_eq_add_one, ← Fin.exists_succAbove_eq_iff] at hxn hyn
|
||||
obtain ⟨x', hx'⟩ := hxn
|
||||
obtain ⟨y', hy'⟩ := hyn
|
||||
use {x', y'}
|
||||
subst hx' hy'
|
||||
simp only [erase, Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, Finset.map_insert,
|
||||
Fin.succAboveEmb_apply, Finset.map_singleton, true_and, and_true]
|
||||
exact ha
|
||||
|
||||
/-- Given a Wick contraction `c : WickContraction n.succ` and a `i : Fin n.succ` the (optional)
|
||||
element of `(erase c i).uncontracted` which comes from the element in `c` contracted
|
||||
with `i`. -/
|
||||
def getDualErase {n : ℕ} (c : WickContraction n.succ) (i : Fin n.succ) :
|
||||
Option ((erase c i).uncontracted) := by
|
||||
match n with
|
||||
| 0 => exact none
|
||||
| Nat.succ n =>
|
||||
refine if hj : (c.getDual? i).isSome then some ⟨(predAboveI i ((c.getDual? i).get hj)), ?_⟩
|
||||
else none
|
||||
rw [mem_erase_uncontracted_iff]
|
||||
apply Or.inr
|
||||
rw [succsAbove_predAboveI, getDual?_eq_some_iff_mem]
|
||||
· simp
|
||||
· apply c.getDual?_eq_some_neq _ _ _
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma getDualErase_isSome_iff_getDual?_isSome (c : WickContraction n.succ) (i : Fin n.succ) :
|
||||
(c.getDualErase i).isSome ↔ (c.getDual? i).isSome := by
|
||||
match n with
|
||||
| 0 =>
|
||||
fin_cases i
|
||||
simp [getDualErase]
|
||||
|
||||
| Nat.succ n =>
|
||||
simp [getDualErase]
|
||||
|
||||
@[simp]
|
||||
lemma getDualErase_one (c : WickContraction 1) (i : Fin 1) :
|
||||
c.getDualErase i = none := by
|
||||
fin_cases i
|
||||
simp [getDualErase]
|
||||
|
||||
end WickContraction
|
Loading…
Add table
Add a link
Reference in a new issue