feat: Time dependent Wick theorem. (#274)
feat: Proof of the time-dependent Wick's theorem
This commit is contained in:
parent
4d43698b3c
commit
17f84b7153
53 changed files with 8563 additions and 3329 deletions
490
HepLean/PerturbationTheory/WickContraction/UncontractedList.lean
Normal file
490
HepLean/PerturbationTheory/WickContraction/UncontractedList.lean
Normal file
|
@ -0,0 +1,490 @@
|
|||
/-
|
||||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.WickContraction.ExtractEquiv
|
||||
/-!
|
||||
|
||||
# List of uncontracted elements
|
||||
|
||||
-/
|
||||
|
||||
open FieldStruct
|
||||
variable {𝓕 : FieldStruct}
|
||||
|
||||
namespace WickContraction
|
||||
variable {n : ℕ} (c : WickContraction n)
|
||||
open HepLean.List
|
||||
open HepLean.Fin
|
||||
|
||||
/-!
|
||||
|
||||
## Some properties of lists of fin
|
||||
|
||||
-/
|
||||
|
||||
lemma fin_list_sorted_monotone_sorted {n m : ℕ} (l: List (Fin n)) (hl : l.Sorted (· ≤ ·))
|
||||
(f : Fin n → Fin m) (hf : StrictMono f) : ((List.map f l)).Sorted (· ≤ ·) := by
|
||||
induction l with
|
||||
| nil => simp
|
||||
| cons a l ih =>
|
||||
simp only [List.map_cons, List.sorted_cons, List.mem_map, forall_exists_index, and_imp,
|
||||
forall_apply_eq_imp_iff₂]
|
||||
apply And.intro
|
||||
· simp only [List.sorted_cons] at hl
|
||||
intro b hb
|
||||
have hl1 := hl.1 b hb
|
||||
exact (StrictMono.le_iff_le hf).mpr hl1
|
||||
· simp only [List.sorted_cons] at hl
|
||||
exact ih hl.2
|
||||
|
||||
lemma fin_list_sorted_succAboveEmb_sorted (l: List (Fin n)) (hl : l.Sorted (· ≤ ·))
|
||||
(i : Fin n.succ) : ((List.map i.succAboveEmb l)).Sorted (· ≤ ·) := by
|
||||
apply fin_list_sorted_monotone_sorted
|
||||
exact hl
|
||||
simp only [Fin.coe_succAboveEmb]
|
||||
exact Fin.strictMono_succAbove i
|
||||
|
||||
lemma fin_list_sorted_split :
|
||||
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : ℕ) →
|
||||
l = l.filter (fun x => x.1 < i) ++ l.filter (fun x => i ≤ x.1)
|
||||
| [], _, _ => by simp
|
||||
| a :: l, hl, i => by
|
||||
simp only [List.sorted_cons] at hl
|
||||
by_cases ha : a < i
|
||||
· conv_lhs => rw [fin_list_sorted_split l hl.2 i]
|
||||
rw [← List.cons_append]
|
||||
rw [List.filter_cons_of_pos, List.filter_cons_of_neg]
|
||||
simp only [decide_eq_true_eq, not_le, ha]
|
||||
simp [ha]
|
||||
· have hx : List.filter (fun x => decide (x.1 < i)) (a :: l) = [] := by
|
||||
simp only [ha, decide_false, Bool.false_eq_true, not_false_eq_true, List.filter_cons_of_neg,
|
||||
List.filter_eq_nil_iff, decide_eq_true_eq, not_lt]
|
||||
intro b hb
|
||||
have hb' := hl.1 b hb
|
||||
omega
|
||||
simp only [hx, List.nil_append]
|
||||
rw [List.filter_cons_of_pos]
|
||||
simp only [List.cons.injEq, true_and]
|
||||
have hl' := fin_list_sorted_split l hl.2 i
|
||||
have hx : List.filter (fun x => decide (x.1 < i)) (l) = [] := by
|
||||
simp only [List.filter_eq_nil_iff, decide_eq_true_eq, not_lt]
|
||||
intro b hb
|
||||
have hb' := hl.1 b hb
|
||||
omega
|
||||
simp only [hx, List.nil_append] at hl'
|
||||
conv_lhs => rw [hl']
|
||||
simp only [decide_eq_true_eq]
|
||||
omega
|
||||
|
||||
lemma fin_list_sorted_indexOf_filter_le_mem :
|
||||
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : Fin n) →
|
||||
(hl : i ∈ l) →
|
||||
List.indexOf i (List.filter (fun x => decide (↑i ≤ ↑x)) l) = 0
|
||||
| [], _, _, _ => by simp
|
||||
| a :: l, hl, i, hi => by
|
||||
simp only [List.sorted_cons] at hl
|
||||
by_cases ha : i ≤ a
|
||||
· simp only [ha, decide_true, List.filter_cons_of_pos]
|
||||
have ha : a = i := by
|
||||
simp only [List.mem_cons] at hi
|
||||
rcases hi with hi | hi
|
||||
· subst hi
|
||||
rfl
|
||||
· have hl' := hl.1 i hi
|
||||
exact Fin.le_antisymm hl' ha
|
||||
subst ha
|
||||
simp
|
||||
· simp only [not_le] at ha
|
||||
rw [List.filter_cons_of_neg (by simpa using ha)]
|
||||
rw [fin_list_sorted_indexOf_filter_le_mem l hl.2]
|
||||
simp only [List.mem_cons] at hi
|
||||
rcases hi with hi | hi
|
||||
· omega
|
||||
· exact hi
|
||||
|
||||
lemma fin_list_sorted_indexOf_mem :
|
||||
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : Fin n) →
|
||||
(hi : i ∈ l) →
|
||||
l.indexOf i = (l.filter (fun x => x.1 < i.1)).length := by
|
||||
intro l hl i hi
|
||||
conv_lhs => rw [fin_list_sorted_split l hl i]
|
||||
rw [List.indexOf_append_of_not_mem]
|
||||
erw [fin_list_sorted_indexOf_filter_le_mem l hl i hi]
|
||||
· simp
|
||||
· simp
|
||||
|
||||
lemma orderedInsert_of_fin_list_sorted :
|
||||
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : Fin n) →
|
||||
List.orderedInsert (· ≤ ·) i l = l.filter (fun x => x.1 < i.1) ++
|
||||
i :: l.filter (fun x => i.1 ≤ x.1)
|
||||
| [], _, _ => by simp
|
||||
| a :: l, hl, i => by
|
||||
simp only [List.sorted_cons] at hl
|
||||
by_cases ha : i ≤ a
|
||||
· simp only [List.orderedInsert, ha, ↓reduceIte, Fin.val_fin_lt, decide_eq_true_eq, not_lt,
|
||||
List.filter_cons_of_neg, Fin.val_fin_le, decide_true, List.filter_cons_of_pos]
|
||||
have h1 : List.filter (fun x => decide (↑x < ↑i)) l = [] := by
|
||||
simp only [List.filter_eq_nil_iff, decide_eq_true_eq, not_lt]
|
||||
intro a ha
|
||||
have ha' := hl.1 a ha
|
||||
omega
|
||||
have hl : l = List.filter (fun x => decide (i ≤ x)) l := by
|
||||
conv_lhs => rw [fin_list_sorted_split l hl.2 i]
|
||||
simp [h1]
|
||||
simp [← hl, h1]
|
||||
· simp only [List.orderedInsert, ha, ↓reduceIte, Fin.val_fin_lt, Fin.val_fin_le, decide_false,
|
||||
Bool.false_eq_true, not_false_eq_true, List.filter_cons_of_neg]
|
||||
rw [List.filter_cons_of_pos]
|
||||
rw [orderedInsert_of_fin_list_sorted l hl.2 i]
|
||||
simp only [Fin.val_fin_lt, Fin.val_fin_le, List.cons_append]
|
||||
simp only [decide_eq_true_eq]
|
||||
omega
|
||||
|
||||
lemma orderedInsert_eq_insertIdx_of_fin_list_sorted (l : List (Fin n)) (hl : l.Sorted (· ≤ ·))
|
||||
(i : Fin n) :
|
||||
List.orderedInsert (· ≤ ·) i l = l.insertIdx (l.filter (fun x => x.1 < i.1)).length i := by
|
||||
let n : Fin l.length.succ := ⟨(List.filter (fun x => decide (x < i)) l).length, by
|
||||
have h1 := l.length_filter_le (fun x => x.1 < i.1)
|
||||
simp only [Fin.val_fin_lt] at h1
|
||||
omega⟩
|
||||
simp only [Fin.val_fin_lt]
|
||||
conv_rhs => rw [insertIdx_eq_take_drop _ _ n]
|
||||
rw [orderedInsert_of_fin_list_sorted]
|
||||
congr
|
||||
· conv_rhs =>
|
||||
rhs
|
||||
rw [fin_list_sorted_split l hl i]
|
||||
simp [n]
|
||||
· conv_rhs =>
|
||||
rhs
|
||||
rw [fin_list_sorted_split l hl i]
|
||||
simp [n]
|
||||
exact hl
|
||||
|
||||
/-!
|
||||
|
||||
## Uncontracted List
|
||||
|
||||
-/
|
||||
|
||||
/-- Given a Wick contraction `c`, the ordered list of elements of `Fin n` which are not contracted,
|
||||
i.e. do not appera anywhere in `c.1`. -/
|
||||
def uncontractedList : List (Fin n) := List.filter (fun x => x ∈ c.uncontracted) (List.finRange n)
|
||||
|
||||
lemma uncontractedList_mem_iff (i : Fin n) :
|
||||
i ∈ c.uncontractedList ↔ i ∈ c.uncontracted := by
|
||||
simp [uncontractedList]
|
||||
|
||||
@[simp]
|
||||
lemma nil_zero_uncontractedList : (empty (n := 0)).uncontractedList = [] := by
|
||||
simp [empty, uncontractedList]
|
||||
|
||||
lemma congr_uncontractedList {n m : ℕ} (h : n = m) (c : WickContraction n) :
|
||||
((congr h) c).uncontractedList = List.map (finCongr h) c.uncontractedList := by
|
||||
subst h
|
||||
simp [congr]
|
||||
|
||||
lemma uncontractedList_get_mem_uncontracted (i : Fin c.uncontractedList.length) :
|
||||
c.uncontractedList.get i ∈ c.uncontracted := by
|
||||
rw [← uncontractedList_mem_iff]
|
||||
simp
|
||||
|
||||
lemma uncontractedList_sorted : List.Sorted (· ≤ ·) c.uncontractedList := by
|
||||
rw [uncontractedList]
|
||||
apply List.Sorted.filter
|
||||
rw [← List.ofFn_id]
|
||||
exact Monotone.ofFn_sorted fun ⦃a b⦄ a => a
|
||||
|
||||
lemma uncontractedList_nodup : c.uncontractedList.Nodup := by
|
||||
rw [uncontractedList]
|
||||
refine List.Nodup.filter (fun x => decide (x ∈ c.uncontracted)) ?_
|
||||
exact List.nodup_finRange n
|
||||
|
||||
lemma uncontractedList_toFinset (c : WickContraction n) :
|
||||
c.uncontractedList.toFinset = c.uncontracted := by
|
||||
simp [uncontractedList]
|
||||
|
||||
lemma uncontractedList_eq_sort (c : WickContraction n) :
|
||||
c.uncontractedList = c.uncontracted.sort (· ≤ ·) := by
|
||||
symm
|
||||
rw [← uncontractedList_toFinset]
|
||||
refine (List.toFinset_sort (α := Fin n) (· ≤ ·) ?_).mpr ?_
|
||||
· exact uncontractedList_nodup c
|
||||
· exact uncontractedList_sorted c
|
||||
|
||||
lemma uncontractedList_length_eq_card (c : WickContraction n) :
|
||||
c.uncontractedList.length = c.uncontracted.card := by
|
||||
rw [uncontractedList_eq_sort]
|
||||
exact Finset.length_sort fun x1 x2 => x1 ≤ x2
|
||||
|
||||
lemma uncontractedList_succAboveEmb_sorted (c : WickContraction n) (i : Fin n.succ) :
|
||||
((List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
|
||||
apply fin_list_sorted_succAboveEmb_sorted
|
||||
exact uncontractedList_sorted c
|
||||
|
||||
lemma uncontractedList_succAboveEmb_nodup (c : WickContraction n) (i : Fin n.succ) :
|
||||
((List.map i.succAboveEmb c.uncontractedList)).Nodup := by
|
||||
refine List.Nodup.map ?_ ?_
|
||||
· exact Function.Embedding.injective i.succAboveEmb
|
||||
· exact uncontractedList_nodup c
|
||||
|
||||
lemma uncontractedList_succAboveEmb_toFinset (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.map i.succAboveEmb c.uncontractedList).toFinset =
|
||||
(Finset.map i.succAboveEmb c.uncontracted) := by
|
||||
ext a
|
||||
simp only [Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_map, Finset.mem_map,
|
||||
Fin.succAboveEmb_apply]
|
||||
rw [← c.uncontractedList_toFinset]
|
||||
simp
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eq_sort(c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.map i.succAboveEmb c.uncontractedList) =
|
||||
(c.uncontracted.map i.succAboveEmb).sort (· ≤ ·) := by
|
||||
rw [← uncontractedList_succAboveEmb_toFinset]
|
||||
symm
|
||||
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
|
||||
· exact uncontractedList_succAboveEmb_nodup c i
|
||||
· exact uncontractedList_succAboveEmb_sorted c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_sorted (c : WickContraction n) (i : Fin n.succ)
|
||||
(k: ℕ) : ((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Sorted (· ≤ ·) := by
|
||||
apply HepLean.List.eraseIdx_sorted
|
||||
exact uncontractedList_succAboveEmb_sorted c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_nodup (c : WickContraction n) (i : Fin n.succ) (k: ℕ) :
|
||||
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Nodup := by
|
||||
refine List.Nodup.eraseIdx k ?_
|
||||
exact uncontractedList_succAboveEmb_nodup c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_toFinset (c : WickContraction n) (i : Fin n.succ)
|
||||
(k : ℕ) (hk : k < c.uncontractedList.length) :
|
||||
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).toFinset =
|
||||
(c.uncontracted.map i.succAboveEmb).erase (i.succAboveEmb c.uncontractedList[k]) := by
|
||||
ext a
|
||||
simp only [Fin.coe_succAboveEmb, List.mem_toFinset, Fin.succAboveEmb_apply, Finset.mem_erase,
|
||||
ne_eq, Finset.mem_map]
|
||||
rw [mem_eraseIdx_nodup _ _ _ (by simpa using hk)]
|
||||
simp_all only [List.mem_map, List.getElem_map, ne_eq]
|
||||
apply Iff.intro
|
||||
· intro a_1
|
||||
simp_all only [not_false_eq_true, true_and]
|
||||
obtain ⟨left, right⟩ := a_1
|
||||
obtain ⟨w, h⟩ := left
|
||||
obtain ⟨left, right_1⟩ := h
|
||||
subst right_1
|
||||
use w
|
||||
simp_all [uncontractedList]
|
||||
· intro a_1
|
||||
simp_all only [not_false_eq_true, and_true]
|
||||
obtain ⟨left, right⟩ := a_1
|
||||
obtain ⟨w, h⟩ := right
|
||||
obtain ⟨left_1, right⟩ := h
|
||||
subst right
|
||||
use w
|
||||
simp_all [uncontractedList]
|
||||
exact uncontractedList_succAboveEmb_nodup c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_eq_sort (c : WickContraction n) (i : Fin n.succ)
|
||||
(k : ℕ) (hk : k < c.uncontractedList.length) :
|
||||
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k) =
|
||||
((c.uncontracted.map i.succAboveEmb).erase
|
||||
(i.succAboveEmb c.uncontractedList[k])).sort (· ≤ ·) := by
|
||||
rw [← uncontractedList_succAboveEmb_eraseIdx_toFinset]
|
||||
symm
|
||||
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
|
||||
· exact uncontractedList_succAboveEmb_eraseIdx_nodup c i k
|
||||
· exact uncontractedList_succAboveEmb_eraseIdx_sorted c i k
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_sorted (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i
|
||||
(List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
|
||||
refine List.Sorted.orderedInsert i (List.map (⇑i.succAboveEmb) c.uncontractedList) ?_
|
||||
exact uncontractedList_succAboveEmb_sorted c i
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_nodup (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Nodup := by
|
||||
have h1 : (List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Perm
|
||||
(i :: List.map i.succAboveEmb c.uncontractedList) := by
|
||||
exact List.perm_orderedInsert (fun x1 x2 => x1 ≤ x2) i _
|
||||
apply List.Perm.nodup h1.symm
|
||||
simp only [Nat.succ_eq_add_one, List.nodup_cons, List.mem_map, not_exists,
|
||||
not_and]
|
||||
apply And.intro
|
||||
· intro x _
|
||||
exact Fin.succAbove_ne i x
|
||||
· exact uncontractedList_succAboveEmb_nodup c i
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_toFinset (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).toFinset =
|
||||
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)) := by
|
||||
ext a
|
||||
simp only [Nat.succ_eq_add_one, Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_orderedInsert,
|
||||
List.mem_map, Finset.mem_insert, Finset.mem_map, Fin.succAboveEmb_apply]
|
||||
rw [← uncontractedList_toFinset]
|
||||
simp
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_eq_sort (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)) =
|
||||
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)).sort (· ≤ ·) := by
|
||||
rw [← uncontractedList_succAbove_orderedInsert_toFinset]
|
||||
symm
|
||||
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
|
||||
· exact uncontractedList_succAbove_orderedInsert_nodup c i
|
||||
· exact uncontractedList_succAbove_orderedInsert_sorted c i
|
||||
|
||||
lemma uncontractedList_extractEquiv_symm_none (c : WickContraction n) (i : Fin n.succ) :
|
||||
((extractEquiv i).symm ⟨c, none⟩).uncontractedList =
|
||||
List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList) := by
|
||||
rw [uncontractedList_eq_sort, extractEquiv_symm_none_uncontracted]
|
||||
rw [uncontractedList_succAbove_orderedInsert_eq_sort]
|
||||
|
||||
/-- Given a Wick contraction `c : WickContraction n` and a `Fin n.succ`, the number of elements
|
||||
of `c.uncontractedList` which are less then `i`.
|
||||
Suppose we want to insert into `c` at position `i`, then this is the position we would
|
||||
need to insert into `c.uncontractedList`. -/
|
||||
def uncontractedListOrderPos (c : WickContraction n) (i : Fin n.succ) : ℕ :=
|
||||
(List.filter (fun x => x.1 < i.1) c.uncontractedList).length
|
||||
|
||||
@[simp]
|
||||
lemma uncontractedListOrderPos_lt_length_add_one (c : WickContraction n) (i : Fin n.succ) :
|
||||
c.uncontractedListOrderPos i < c.uncontractedList.length + 1 := by
|
||||
simp only [uncontractedListOrderPos, Nat.succ_eq_add_one]
|
||||
have h1 := c.uncontractedList.length_filter_le (fun x => x.1 < i.1)
|
||||
omega
|
||||
|
||||
lemma take_uncontractedListOrderPos_eq_filter (c : WickContraction n) (i : Fin n.succ) :
|
||||
(c.uncontractedList.take (c.uncontractedListOrderPos i)) =
|
||||
c.uncontractedList.filter (fun x => x.1 < i.1) := by
|
||||
nth_rewrite 1 [fin_list_sorted_split c.uncontractedList _ i]
|
||||
simp only [uncontractedListOrderPos, Nat.succ_eq_add_one, List.take_left']
|
||||
exact uncontractedList_sorted c
|
||||
|
||||
lemma take_uncontractedListOrderPos_eq_filter_sort (c : WickContraction n) (i : Fin n.succ) :
|
||||
(c.uncontractedList.take (c.uncontractedListOrderPos i)) =
|
||||
(c.uncontracted.filter (fun x => x.1 < i.1)).sort (· ≤ ·) := by
|
||||
rw [take_uncontractedListOrderPos_eq_filter]
|
||||
have h1 : (c.uncontractedList.filter (fun x => x.1 < i.1)).Sorted (· ≤ ·) := by
|
||||
apply List.Sorted.filter
|
||||
exact uncontractedList_sorted c
|
||||
have h2 : (c.uncontractedList.filter (fun x => x.1 < i.1)).Nodup := by
|
||||
refine List.Nodup.filter _ ?_
|
||||
exact uncontractedList_nodup c
|
||||
have h3 : (c.uncontractedList.filter (fun x => x.1 < i.1)).toFinset =
|
||||
(c.uncontracted.filter (fun x => x.1 < i.1)) := by
|
||||
rw [uncontractedList_eq_sort]
|
||||
simp
|
||||
rw [← h3]
|
||||
exact ((List.toFinset_sort (α := Fin n) (· ≤ ·) h2).mpr h1).symm
|
||||
|
||||
lemma orderedInsert_succAboveEmb_uncontractedList_eq_insertIdx (c : WickContraction n)
|
||||
(i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)) =
|
||||
(List.map i.succAboveEmb c.uncontractedList).insertIdx (uncontractedListOrderPos c i) i := by
|
||||
rw [orderedInsert_eq_insertIdx_of_fin_list_sorted]
|
||||
swap
|
||||
exact uncontractedList_succAboveEmb_sorted c i
|
||||
congr 1
|
||||
simp only [Nat.succ_eq_add_one, Fin.val_fin_lt, Fin.coe_succAboveEmb, uncontractedListOrderPos]
|
||||
rw [List.filter_map]
|
||||
simp only [List.length_map]
|
||||
congr
|
||||
funext x
|
||||
simp only [Function.comp_apply, Fin.succAbove, decide_eq_decide]
|
||||
split
|
||||
simp only [Fin.lt_def, Fin.coe_castSucc]
|
||||
rename_i h
|
||||
simp_all only [Fin.lt_def, Fin.coe_castSucc, not_lt, Fin.val_succ]
|
||||
omega
|
||||
|
||||
/-- The equivalence between the positions of `c.uncontractedList` i.e. elements of
|
||||
`Fin (c.uncontractedList).length` and the finite set `c.uncontracted` considered as a finite type.
|
||||
-/
|
||||
def uncontractedFinEquiv (c : WickContraction n) :
|
||||
Fin (c.uncontractedList).length ≃ c.uncontracted where
|
||||
toFun i := ⟨c.uncontractedList.get i, c.uncontractedList_get_mem_uncontracted i⟩
|
||||
invFun i := ⟨List.indexOf i.1 c.uncontractedList,
|
||||
List.indexOf_lt_length.mpr ((c.uncontractedList_mem_iff i.1).mpr i.2)⟩
|
||||
left_inv i := by
|
||||
ext
|
||||
exact List.get_indexOf (uncontractedList_nodup c) _
|
||||
right_inv i := by
|
||||
ext
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma uncontractedList_getElem_uncontractedFinEquiv_symm (k : c.uncontracted) :
|
||||
c.uncontractedList[(c.uncontractedFinEquiv.symm k).val] = k := by
|
||||
simp [uncontractedFinEquiv]
|
||||
|
||||
lemma uncontractedFinEquiv_symm_eq_filter_length (k : c.uncontracted) :
|
||||
(c.uncontractedFinEquiv.symm k).val =
|
||||
(List.filter (fun i => i < k.val) c.uncontractedList).length := by
|
||||
simp only [uncontractedFinEquiv, List.get_eq_getElem, Equiv.coe_fn_symm_mk]
|
||||
rw [fin_list_sorted_indexOf_mem]
|
||||
· simp
|
||||
· exact uncontractedList_sorted c
|
||||
· rw [uncontractedList_mem_iff]
|
||||
exact k.2
|
||||
|
||||
lemma take_uncontractedFinEquiv_symm (k : c.uncontracted) :
|
||||
c.uncontractedList.take (c.uncontractedFinEquiv.symm k).val =
|
||||
c.uncontractedList.filter (fun i => i < k.val) := by
|
||||
have hl := fin_list_sorted_split c.uncontractedList (uncontractedList_sorted c) k.val
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [hl]
|
||||
rw [uncontractedFinEquiv_symm_eq_filter_length]
|
||||
simp
|
||||
|
||||
/-- The equivalence between the type `Option c.uncontracted` for `WickContraction φs.length` and
|
||||
`Option (Fin (c.uncontractedList.map φs.get).length)`, that is optional positions of
|
||||
`c.uncontractedList.map φs.get` induced by `uncontractedFinEquiv`. -/
|
||||
def uncontractedStatesEquiv (φs : List 𝓕.States) (c : WickContraction φs.length) :
|
||||
Option c.uncontracted ≃ Option (Fin (c.uncontractedList.map φs.get).length) :=
|
||||
Equiv.optionCongr (c.uncontractedFinEquiv.symm.trans (finCongr (by simp)))
|
||||
|
||||
@[simp]
|
||||
lemma uncontractedStatesEquiv_none (φs : List 𝓕.States) (c : WickContraction φs.length) :
|
||||
(uncontractedStatesEquiv φs c).toFun none = none := by
|
||||
simp [uncontractedStatesEquiv]
|
||||
|
||||
lemma uncontractedStatesEquiv_list_sum [AddCommMonoid α] (φs : List 𝓕.States)
|
||||
(c : WickContraction φs.length) (f : Option (Fin (c.uncontractedList.map φs.get).length) → α) :
|
||||
∑ (i : Option (Fin (c.uncontractedList.map φs.get).length)), f i =
|
||||
∑ (i : Option c.uncontracted), f (c.uncontractedStatesEquiv φs i) := by
|
||||
rw [(c.uncontractedStatesEquiv φs).sum_comp]
|
||||
|
||||
lemma uncontractedList_extractEquiv_symm_some (c : WickContraction n) (i : Fin n.succ)
|
||||
(k : c.uncontracted) : ((extractEquiv i).symm ⟨c, some k⟩).uncontractedList =
|
||||
((c.uncontractedList).map i.succAboveEmb).eraseIdx (c.uncontractedFinEquiv.symm k) := by
|
||||
rw [uncontractedList_eq_sort]
|
||||
rw [uncontractedList_succAboveEmb_eraseIdx_eq_sort]
|
||||
swap
|
||||
simp only [Fin.is_lt]
|
||||
congr
|
||||
simp only [Nat.succ_eq_add_one, extractEquiv, Equiv.coe_fn_symm_mk,
|
||||
uncontractedList_getElem_uncontractedFinEquiv_symm, Fin.succAboveEmb_apply]
|
||||
rw [insert_some_uncontracted]
|
||||
ext a
|
||||
simp
|
||||
|
||||
lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [DecidablePred p] :
|
||||
(c.uncontractedList.filter p) = (c.uncontracted.filter p).sort (· ≤ ·) := by
|
||||
have h1 : (c.uncontractedList.filter p).Sorted (· ≤ ·) := by
|
||||
apply List.Sorted.filter
|
||||
exact uncontractedList_sorted c
|
||||
have h2 : (c.uncontractedList.filter p).Nodup := by
|
||||
refine List.Nodup.filter _ ?_
|
||||
exact uncontractedList_nodup c
|
||||
have h3 : (c.uncontractedList.filter p).toFinset = (c.uncontracted.filter p) := by
|
||||
ext a
|
||||
simp only [List.toFinset_filter, decide_eq_true_eq, Finset.mem_filter, List.mem_toFinset,
|
||||
and_congr_left_iff]
|
||||
rw [uncontractedList_mem_iff]
|
||||
simp
|
||||
have hx := (List.toFinset_sort (· ≤ ·) h2).mpr h1
|
||||
rw [← hx, h3]
|
||||
|
||||
end WickContraction
|
Loading…
Add table
Add a link
Reference in a new issue