feat: Add properties for line in cubic

This commit is contained in:
jstoobysmith 2024-04-18 11:30:10 -04:00
parent 3218b93c27
commit 18183c8cef
3 changed files with 349 additions and 1 deletions

View file

@ -13,12 +13,14 @@ import HepLean.AnomalyCancellation.MSSMNu.Y3
import HepLean.AnomalyCancellation.PureU1.Basic
import HepLean.AnomalyCancellation.PureU1.BasisLinear
import HepLean.AnomalyCancellation.PureU1.ConstAbs
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
import HepLean.AnomalyCancellation.PureU1.Even.BasisLinear
import HepLean.AnomalyCancellation.PureU1.Even.LineInCubic
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
import HepLean.AnomalyCancellation.PureU1.LowDim.One
import HepLean.AnomalyCancellation.PureU1.LowDim.Three
import HepLean.AnomalyCancellation.PureU1.LowDim.Two
import HepLean.AnomalyCancellation.PureU1.Odd.BasisLinear
import HepLean.AnomalyCancellation.PureU1.Odd.LineInCubic
import HepLean.AnomalyCancellation.PureU1.Permutations
import HepLean.AnomalyCancellation.PureU1.Sort
import HepLean.AnomalyCancellation.PureU1.VectorLike

View file

@ -0,0 +1,173 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.PureU1.Basic
import HepLean.AnomalyCancellation.PureU1.ConstAbs
import HepLean.AnomalyCancellation.PureU1.Even.BasisLinear
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
import HepLean.AnomalyCancellation.PureU1.Permutations
import Mathlib.RepresentationTheory.Basic
import Mathlib.Tactic.Polyrith
/-!
# Line In Cubic Even case
We say that a linear solution satisfies the `lineInCubic` property
if the line through that point and through the two different planes formed by the baisis of
`LinSols` lies in the cubic.
We show that for a solution all its permutations satsfiy this property, then there exists
a permutation for which it lies in the plane spanned by the first part of the basis.
The main reference for this file is:
- https://arxiv.org/pdf/1912.04804.pdf
-/
namespace PureU1
namespace Even
open BigOperators
variable {n : }
open VectorLikeEvenPlane
/-- A property on `LinSols`, statified if every point on the line between the two planes
in the basis through that point is in the cubic. -/
def lineInCubic (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
∀ (g : Fin n.succ → ) (f : Fin n → ) (_ : S.val = Pa g f) (a b : ) ,
accCube (2 * n.succ) (a • P g + b • P! f) = 0
lemma lineInCubic_expand {S : (PureU1 (2 * n.succ)).LinSols} (h : lineInCubic S) :
∀ (g : Fin n.succ → ) (f : Fin n → ) (_ : S.val = Pa g f) (a b : ) ,
3 * a * b * (a * accCubeTriLinSymm (P g, P g, P! f)
+ b * accCubeTriLinSymm (P! f, P! f, P g)) = 0 := by
intro g f hS a b
have h1 := h g f hS a b
change accCubeTriLinSymm.toCubic (a • P g + b • P! f) = 0 at h1
simp only [TriLinearSymm.toCubic_add] at h1
simp only [HomogeneousCubic.map_smul,
accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂, accCubeTriLinSymm.map_smul₃] at h1
erw [P_accCube, P!_accCube] at h1
rw [← h1]
ring
/--
This lemma states that for a given `S` of type `(PureU1 (2 * n.succ)).AnomalyFreeLinear` and
a proof `h` that the line through `S` lies on a cubic curve,
for any functions `g : Fin n.succ → ` and `f : Fin n → `, if `S.val = P g + P! f`,
then `accCubeTriLinSymm.toFun (P g, P g, P! f) = 0`.
-/
lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n.succ)).LinSols} (h : lineInCubic S) :
∀ (g : Fin n.succ → ) (f : Fin n → ) (_ : S.val = P g + P! f),
accCubeTriLinSymm (P g, P g, P! f) = 0 := by
intro g f hS
linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1) -
(lineInCubic_expand h g f hS 1 2) / 6
/-- We say a `LinSol` satifies `lineInCubicPerm` if all its permutations satsify `lineInCubic`. -/
def lineInCubicPerm (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
∀ (M : (FamilyPermutations (2 * n.succ)).group ),
lineInCubic ((FamilyPermutations (2 * n.succ)).linSolRep M S)
/-- If `lineInCubicPerm S` then `lineInCubic S`. -/
lemma lineInCubicPerm_self {S : (PureU1 (2 * n.succ)).LinSols}
(hS : lineInCubicPerm S) : lineInCubic S := hS 1
/-- If `lineInCubicPerm S` then `lineInCubicPerm (M S)` for all permutations `M`. -/
lemma lineInCubicPerm_permute {S : (PureU1 (2 * n.succ)).LinSols}
(hS : lineInCubicPerm S) (M' : (FamilyPermutations (2 * n.succ)).group) :
lineInCubicPerm ((FamilyPermutations (2 * n.succ)).linSolRep M' S) := by
rw [lineInCubicPerm]
intro M
change lineInCubic
(((FamilyPermutations (2 * n.succ)).linSolRep M * (FamilyPermutations (2 * n.succ)).linSolRep M') S)
erw [← (FamilyPermutations (2 * n.succ)).linSolRep.map_mul M M']
exact hS (M * M')
lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ)).LinSols}
(LIC : lineInCubicPerm S) :
∀ (j : Fin n) (g : Fin n.succ → ) (f : Fin n → ) (_ : S.val = Pa g f) ,
(S.val (δ!₂ j) - S.val (δ!₁ j))
* accCubeTriLinSymm.toFun (P g, P g, basis!AsCharges j) = 0 := by
intro j g f h
let S' := (FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j)) S
have hSS' : ((FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j))) S = S' := rfl
obtain ⟨g', f', hall⟩ := span_basis_swap! j hSS' g f h
have h1 := line_in_cubic_P_P_P! (lineInCubicPerm_self LIC) g f h
have h2 := line_in_cubic_P_P_P!
(lineInCubicPerm_self (lineInCubicPerm_permute LIC (pairSwap (δ!₁ j) (δ!₂ j)))) g' f' hall.1
rw [hall.2.1, hall.2.2] at h2
rw [accCubeTriLinSymm.map_add₃, h1, accCubeTriLinSymm.map_smul₃] at h2
simpa using h2
lemma P_P_P!_accCube' {S : (PureU1 (2 * n.succ.succ )).LinSols}
(f : Fin n.succ.succ → ) (g : Fin n.succ → ) (hS : S.val = Pa f g) :
accCubeTriLinSymm.toFun (P f, P f, basis!AsCharges (Fin.last n)) =
- (S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) * (2 * S.val δ!₄ +
S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) := by
rw [P_P_P!_accCube f (Fin.last n)]
have h1 := Pa_δ!₄ f g
have h2 := Pa_δ!₁ f g (Fin.last n)
have h3 := Pa_δ!₂ f g (Fin.last n)
simp at h1 h2 h3
have hl : f (Fin.succ (Fin.last (n ))) = - Pa f g δ!₄ := by
simp_all only [Fin.succ_last, neg_neg]
erw [hl] at h2
have hg : g (Fin.last n) = Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄ := by
linear_combination -(1 * h2)
have hll : f (Fin.castSucc (Fin.last (n ))) =
- (Pa f g (δ!₂ (Fin.last n)) + Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄) := by
linear_combination h3 - 1 * hg
rw [← hS] at hl hll
rw [hl, hll]
ring
lemma lineInCubicPerm_last_cond {S : (PureU1 (2 * n.succ.succ)).LinSols}
(LIC : lineInCubicPerm S) :
lineInPlaneProp
((S.val (δ!₂ (Fin.last n))), ((S.val (δ!₁ (Fin.last n))), (S.val δ!₄))) := by
obtain ⟨g, f, hfg⟩ := span_basis S
have h1 := lineInCubicPerm_swap LIC (Fin.last n) g f hfg
rw [P_P_P!_accCube' g f hfg] at h1
simp at h1
cases h1 <;> rename_i h1
apply Or.inl
linear_combination h1
cases h1 <;> rename_i h1
apply Or.inr
apply Or.inl
linear_combination -(1 * h1)
apply Or.inr
apply Or.inr
exact h1
lemma lineInCubicPerm_last_perm {S : (PureU1 (2 * n.succ.succ)).LinSols}
(LIC : lineInCubicPerm S) : lineInPlaneCond S := by
refine @Prop_three (2 * n.succ.succ) lineInPlaneProp S (δ!₂ (Fin.last n)) (δ!₁ (Fin.last n))
δ!₄ ?_ ?_ ?_ ?_
simp [Fin.ext_iff, δ!₂, δ!₁]
simp [Fin.ext_iff, δ!₂, δ!₄]
simp [Fin.ext_iff, δ!₁, δ!₄]
omega
intro M
exact lineInCubicPerm_last_cond (lineInCubicPerm_permute LIC M)
lemma lineInCubicPerm_constAbs {S : (PureU1 (2 * n.succ.succ)).Sols}
(LIC : lineInCubicPerm S.1.1) : constAbs S.val :=
linesInPlane_constAbs_AF S (lineInCubicPerm_last_perm LIC)
theorem lineInCubicPerm_vectorLike {S : (PureU1 (2 * n.succ.succ)).Sols}
(LIC : lineInCubicPerm S.1.1) : vectorLikeEven S.val :=
ConstAbs.boundary_value_even S.1.1 (lineInCubicPerm_constAbs LIC)
theorem lineInCubicPerm_in_plane (S : (PureU1 (2 * n.succ.succ)).Sols)
(LIC : lineInCubicPerm S.1.1) : ∃ (M : (FamilyPermutations (2 * n.succ.succ)).group),
(FamilyPermutations (2 * n.succ.succ)).linSolRep M S.1.1
∈ Submodule.span (Set.range basis) :=
vectorLikeEven_in_span S.1.1 (lineInCubicPerm_vectorLike LIC)
end Even
end PureU1

View file

@ -0,0 +1,173 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.PureU1.Basic
import HepLean.AnomalyCancellation.PureU1.Permutations
import HepLean.AnomalyCancellation.PureU1.VectorLike
import HepLean.AnomalyCancellation.PureU1.ConstAbs
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
import HepLean.AnomalyCancellation.PureU1.Odd.BasisLinear
import Mathlib.Tactic.Polyrith
import Mathlib.RepresentationTheory.Basic
/-!
# Line In Cubic Odd case
We say that a linear solution satisfies the `lineInCubic` property
if the line through that point and through the two different planes formed by the baisis of
`LinSols` lies in the cubic.
We show that for a solution all its permutations satsfiy this property,
then the charge must be zero.
The main reference for this file is:
- https://arxiv.org/pdf/1912.04804.pdf
-/
namespace PureU1
namespace Odd
open BigOperators
variable {n : }
open VectorLikeOddPlane
/-- A property on `LinSols`, statified if every point on the line between the two planes
in the basis through that point is in the cubic. -/
def lineInCubic (S : (PureU1 (2 * n + 1)).LinSols) : Prop :=
∀ (g f : Fin n → ) (_ : S.val = Pa g f) (a b : ) ,
accCube (2 * n + 1) (a • P g + b • P! f) = 0
lemma lineInCubic_expand {S : (PureU1 (2 * n + 1)).LinSols} (h : lineInCubic S) :
∀ (g : Fin n → ) (f : Fin n → ) (_ : S.val = P g + P! f) (a b : ) ,
3 * a * b * (a * accCubeTriLinSymm (P g, P g, P! f)
+ b * accCubeTriLinSymm (P! f, P! f, P g)) = 0 := by
intro g f hS a b
have h1 := h g f hS a b
change accCubeTriLinSymm.toCubic (a • P g + b • P! f) = 0 at h1
simp only [TriLinearSymm.toCubic_add] at h1
simp only [HomogeneousCubic.map_smul,
accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂, accCubeTriLinSymm.map_smul₃] at h1
erw [P_accCube, P!_accCube] at h1
rw [← h1]
ring
lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : lineInCubic S) :
∀ (g : Fin n → ) (f : Fin n → ) (_ : S.val = P g + P! f),
accCubeTriLinSymm (P g, P g, P! f) = 0 := by
intro g f hS
linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1 ) -
(lineInCubic_expand h g f hS 1 2 ) / 6
/-- We say a `LinSol` satifies `lineInCubicPerm` if all its permutations satsify `lineInCubic`. -/
def lineInCubicPerm (S : (PureU1 (2 * n + 1)).LinSols) : Prop :=
∀ (M : (FamilyPermutations (2 * n + 1)).group ),
lineInCubic ((FamilyPermutations (2 * n + 1)).linSolRep M S)
/-- If `lineInCubicPerm S` then `lineInCubic S`. -/
lemma lineInCubicPerm_self {S : (PureU1 (2 * n + 1)).LinSols} (hS : lineInCubicPerm S) :
lineInCubic S := hS 1
/-- If `lineInCubicPerm S` then `lineInCubicPerm (M S)` for all permutations `M`. -/
lemma lineInCubicPerm_permute {S : (PureU1 (2 * n + 1)).LinSols}
(hS : lineInCubicPerm S) (M' : (FamilyPermutations (2 * n + 1)).group) :
lineInCubicPerm ((FamilyPermutations (2 * n + 1)).linSolRep M' S) := by
rw [lineInCubicPerm]
intro M
have ht : ((FamilyPermutations (2 * n + 1)).linSolRep M)
((FamilyPermutations (2 * n + 1)).linSolRep M' S)
= (FamilyPermutations (2 * n + 1)).linSolRep (M * M') S := by
simp [(FamilyPermutations (2 * n.succ)).linSolRep.map_mul']
rw [ht]
exact hS (M * M')
lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ + 1)).LinSols}
(LIC : lineInCubicPerm S) :
∀ (j : Fin n.succ) (g f : Fin n.succ → ) (_ : S.val = Pa g f) ,
(S.val (δ!₂ j) - S.val (δ!₁ j))
* accCubeTriLinSymm.toFun (P g, P g, basis!AsCharges j) = 0 := by
intro j g f h
let S' := (FamilyPermutations (2 * n.succ + 1)).linSolRep
(pairSwap (δ!₁ j) (δ!₂ j)) S
have hSS' : ((FamilyPermutations (2 * n.succ + 1)).linSolRep
(pairSwap (δ!₁ j) (δ!₂ j))) S = S' := rfl
obtain ⟨g', f', hall⟩ := span_basis_swap! j hSS' g f h
have h1 := line_in_cubic_P_P_P! (lineInCubicPerm_self LIC) g f h
have h2 := line_in_cubic_P_P_P!
(lineInCubicPerm_self (lineInCubicPerm_permute LIC (pairSwap (δ!₁ j) (δ!₂ j)))) g' f' hall.1
rw [hall.2.1, hall.2.2] at h2
rw [accCubeTriLinSymm.map_add₃, h1, accCubeTriLinSymm.map_smul₃] at h2
simpa using h2
lemma P_P_P!_accCube' {S : (PureU1 (2 * n.succ.succ + 1)).LinSols}
(f g : Fin n.succ.succ → ) (hS : S.val = Pa f g) :
accCubeTriLinSymm.toFun (P f, P f, basis!AsCharges 0) =
(S.val (δ!₁ 0) + S.val (δ!₂ 0)) * (2 * S.val δ!₃ + S.val (δ!₁ 0) + S.val (δ!₂ 0)) := by
rw [P_P_P!_accCube f 0]
rw [← Pa_δa₁ f g]
rw [← hS]
have ht : δ!₁ (0 : Fin n.succ.succ) = δ₁ 1 := by
simp [δ!₁, δ₁]
rw [Fin.ext_iff]
simp
nth_rewrite 1 [ht]
rw [P_δ₁]
have h1 := Pa_δa₁ f g
have h4 := Pa_δa₄ f g 0
have h2 := Pa_δa₂ f g 0
rw [← hS] at h1 h2 h4
simp at h2
have h5 : f 1 = S.val (δa₂ 0) + S.val δa₁ + S.val (δa₄ 0):= by
linear_combination -(1 * h1) - 1 * h4 - 1 * h2
rw [h5]
rw [δa₄_δ!₂]
have h0 : (δa₂ (0 : Fin n.succ)) = δ!₁ 0 := by
rw [δa₂_δ!₁]
simp
rw [h0, δa₁_δ!₃]
ring
lemma lineInCubicPerm_last_cond {S : (PureU1 (2 * n.succ.succ+1)).LinSols}
(LIC : lineInCubicPerm S) :
lineInPlaneProp ((S.val (δ!₂ 0)), ((S.val (δ!₁ 0)), (S.val δ!₃))) := by
obtain ⟨g, f, hfg⟩ := span_basis S
have h1 := lineInCubicPerm_swap LIC 0 g f hfg
rw [P_P_P!_accCube' g f hfg] at h1
simp at h1
cases h1 <;> rename_i h1
apply Or.inl
linear_combination h1
cases h1 <;> rename_i h1
apply Or.inr
apply Or.inl
linear_combination h1
apply Or.inr
apply Or.inr
linear_combination h1
lemma lineInCubicPerm_last_perm {S : (PureU1 (2 * n.succ.succ + 1)).LinSols}
(LIC : lineInCubicPerm S) : lineInPlaneCond S := by
refine @Prop_three (2 * n.succ.succ + 1) lineInPlaneProp S (δ!₂ 0) (δ!₁ 0)
δ!₃ ?_ ?_ ?_ ?_
simp [Fin.ext_iff, δ!₂, δ!₁]
simp [Fin.ext_iff, δ!₂, δ!₃]
simp [Fin.ext_iff, δ!₁, δ!₃]
intro M
exact lineInCubicPerm_last_cond (lineInCubicPerm_permute LIC M)
lemma lineInCubicPerm_constAbs {S : (PureU1 (2 * n.succ.succ + 1)).LinSols}
(LIC : lineInCubicPerm S) : constAbs S.val :=
linesInPlane_constAbs (lineInCubicPerm_last_perm LIC)
theorem lineInCubicPerm_zero {S : (PureU1 (2 * n.succ.succ + 1)).LinSols}
(LIC : lineInCubicPerm S) : S = 0 :=
ConstAbs.boundary_value_odd S (lineInCubicPerm_constAbs LIC)
end Odd
end PureU1