Merge pull request #150 from HEPLean/TwoHiggsDoublet
feat: Gauge freedom of Higgs fields
This commit is contained in:
commit
1822002721
2 changed files with 32 additions and 0 deletions
|
@ -206,6 +206,12 @@ lemma isBounded_of_left_eq_neg_right (h : P.IsBounded) :
|
|||
exact hc1
|
||||
exact StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
|
||||
lemma nonneg_sum_𝓵₁_to_𝓵₅_of_isBounded (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re := by
|
||||
have h1 := isBounded_of_left_eq_neg_right h
|
||||
have h2 := isBounded_of_left_eq_right h
|
||||
linarith
|
||||
|
||||
end IsBounded
|
||||
|
||||
end Potential
|
||||
|
|
|
@ -165,6 +165,32 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
|||
· use rotateGuageGroup h
|
||||
exact rotateGuageGroup_apply h
|
||||
|
||||
theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroup), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
|
||||
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ
|
||||
let P : GaugeGroup := ⟨1, ⟨!![0, 1; -1, 0], by
|
||||
rw [@mem_specialUnitaryGroup_iff]
|
||||
apply And.intro
|
||||
· rw [mem_unitaryGroup_iff, star_eq_conjTranspose]
|
||||
ext i j
|
||||
rw [Matrix.mul_apply]
|
||||
rw [@Fin.sum_univ_two]
|
||||
fin_cases i <;> fin_cases j
|
||||
<;> simp
|
||||
· simp [det_fin_two]⟩, 1⟩
|
||||
use P * g
|
||||
rw [rep.map_mul]
|
||||
change rep P (rep g φ) = _
|
||||
rw [h, rep_apply]
|
||||
simp only [one_pow, Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe, mulVec_cons, zero_smul,
|
||||
coe_smul, mulVec_empty, add_zero, zero_add, one_smul]
|
||||
funext i
|
||||
fin_cases i
|
||||
· simp only [Fin.zero_eta, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_zero,
|
||||
tail_cons, head_cons, real_smul, mul_one]
|
||||
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
|
||||
tail_cons, smul_zero]
|
||||
|
||||
end HiggsVec
|
||||
|
||||
/-! TODO: Define the global gauge action on HiggsField. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue