feat: Example of evaluation
This commit is contained in:
parent
3ac4523d7d
commit
18709d4e32
3 changed files with 64 additions and 21 deletions
|
@ -12,6 +12,7 @@ import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
|||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||||
import LLMLean
|
||||
/-!
|
||||
|
||||
## Lemmas related to complex Lorentz tensors.
|
||||
|
@ -35,19 +36,45 @@ namespace Fermion
|
|||
example : 0 < complexLorentzTensor.repDim (![Color.down] 0):= by decide
|
||||
|
||||
|
||||
def coCoBasis (b : Fin 4 × Fin 4) :
|
||||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]) :=
|
||||
PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.1)
|
||||
(fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.2) (fun i => i.elim0) i) i)
|
||||
|
||||
|
||||
lemma coCoBasis_eval (e1 e2 : Fin (complexLorentzTensor.repDim Color.down)) (i : Fin 4 × Fin 4) :
|
||||
complexLorentzTensor.castFin0ToField
|
||||
((complexLorentzTensor.evalMap 0 e2) ((complexLorentzTensor.evalMap 0 e1) (coCoBasis i))) =
|
||||
if i = (e1, e2) then 1 else 0 := by
|
||||
simp only [coCoBasis]
|
||||
have h1 := @TensorSpecies.evalMap_tprod complexLorentzTensor _ (![Color.down, Color.down]) 0 e1
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj,
|
||||
OverColor.mk_hom, Function.comp_apply, cons_val_zero, Fin.cases_zero, Fin.cases_succ] at h1
|
||||
erw [h1]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj, OverColor.mk_hom,
|
||||
Fin.cases_zero, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
|
||||
erw [TensorSpecies.evalMap_tprod]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.succAbove_zero, Functor.id_obj,
|
||||
OverColor.mk_hom, Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons,
|
||||
Fin.cases_zero, Fin.zero_succAbove, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
|
||||
erw [complexLorentzTensor.castFin0ToField_tprod]
|
||||
simp only [Fin.isValue, mul_one]
|
||||
change (Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.1)) e1 *
|
||||
(Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.2)) e2 = _
|
||||
simp only [Basis.repr_self]
|
||||
rw [Finsupp.single_apply, Finsupp.single_apply]
|
||||
rw [@ite_zero_mul_ite_zero]
|
||||
simp
|
||||
congr
|
||||
simp_all only [Fin.isValue, Fin.succAbove_zero, Fin.zero_succAbove, eq_iff_iff]
|
||||
obtain ⟨fst, snd⟩ := i
|
||||
simp_all only [Fin.isValue, Prod.mk.injEq]
|
||||
|
||||
lemma coMetric_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
|
||||
(PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inl 0))
|
||||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inl 0)) (fun i => i.elim0) i) i) :
|
||||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
|
||||
- (PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 0))
|
||||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 0)) (fun i => i.elim0) i) i) :
|
||||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
|
||||
- (PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 1))
|
||||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 1)) (fun i => i.elim0) i) i) :
|
||||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
|
||||
- (PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 2))
|
||||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 2)) (fun i => i.elim0) i) i) :
|
||||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down])) := by
|
||||
coCoBasis (0, 0)
|
||||
- coCoBasis (1, 1)
|
||||
- coCoBasis (2, 2)
|
||||
- coCoBasis (3, 3):= by
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Functor.id_obj, Fin.isValue]
|
||||
|
@ -57,7 +84,9 @@ lemma coMetric_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
|
|||
congr 1
|
||||
congr 1
|
||||
all_goals
|
||||
erw [pairIsoSep_tmul]
|
||||
erw [pairIsoSep_tmul, coCoBasis]
|
||||
simp only [Nat.reduceAdd, Nat.succ_eq_add_one, OverColor.mk_hom, Functor.id_obj, Fin.isValue,
|
||||
Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||
rfl
|
||||
|
||||
/-- The covariant Lorentz metric is symmetric. -/
|
||||
|
@ -66,17 +95,28 @@ lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ :
|
|||
rw [coMetric_expand]
|
||||
simp only [TensorSpecies.F, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, Fin.isValue,
|
||||
map_sub]
|
||||
simp only [coCoBasis, Nat.reduceAdd, Nat.succ_eq_add_one, OverColor.mk_hom, Functor.id_obj, Fin.isValue,
|
||||
Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||
congr 1
|
||||
congr 1
|
||||
congr 1
|
||||
all_goals
|
||||
erw [OverColor.lift.map_tprod]
|
||||
apply congrArg
|
||||
congr 1
|
||||
funext i
|
||||
match i with
|
||||
| (0 : Fin 2) => rfl
|
||||
| (1 : Fin 2) => rfl
|
||||
|
||||
lemma coMetric_0_0_field : {Lorentz.coMetric | 0 0}ᵀ.field = 1 := by
|
||||
rw [field, eval_tensor, eval_tensor, coMetric_expand]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
|
||||
Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons, Fin.ofNat'_zero,
|
||||
cons_val_zero, Functor.id_obj, OverColor.mk_hom, map_sub]
|
||||
rw [coCoBasis_eval, coCoBasis_eval, coCoBasis_eval, coCoBasis_eval]
|
||||
simp only [Fin.isValue, Prod.mk_zero_zero, ↓reduceIte, Prod.mk_one_one, one_ne_zero, sub_zero,
|
||||
Prod.mk_eq_zero, Fin.reduceEq, and_self]
|
||||
|
||||
set_option maxRecDepth 20000 in
|
||||
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||||
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
|
||||
|
@ -149,12 +189,6 @@ lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
|||
rw [antiSymm_contr_symm hA hs]
|
||||
rfl
|
||||
|
||||
variable (p : Lorentz.complexCo) (q : Lorentz.complexContr)
|
||||
|
||||
lemma contr_rank_1_expand (p : Lorentz.complexCo) (q : Lorentz.complexContr) :
|
||||
{p | μ ⊗ q | μ = p | 0}ᵀ := by
|
||||
sorry
|
||||
|
||||
end Fermion
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue