diff --git a/HepLean/Tensors/OverColor/Basic.lean b/HepLean/Tensors/OverColor/Basic.lean index b32fcef..9695a52 100644 --- a/HepLean/Tensors/OverColor/Basic.lean +++ b/HepLean/Tensors/OverColor/Basic.lean @@ -17,7 +17,7 @@ The way to describe color is through examples. Indices of real Lorentz tensors can either be up-colored or down-colored. On the other hand, indices of Einstein tensors can just down-colored. In the case of complex Lorentz tensors, indices can take one of six different colors, -corresponding to up and down, dotted and undotted weyl fermion indcies and up and down +corresponding to up and down, dotted and undotted weyl fermion indices and up and down Lorentz indices. -/ diff --git a/HepLean/Tensors/OverColor/Discrete.lean b/HepLean/Tensors/OverColor/Discrete.lean index b7863b8..834e8ba 100644 --- a/HepLean/Tensors/OverColor/Discrete.lean +++ b/HepLean/Tensors/OverColor/Discrete.lean @@ -46,7 +46,7 @@ def pairIso (c : C) : (pair F).obj (Discrete.mk c) ≅ (lift.obj F).obj (OverCol rfl /-- The isomorphism between `F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2)` and - `(lift.obj F).obj (OverColor.mk ![c1,c2])` formed by the tensorate. -/ + `(lift.obj F).obj (OverColor.mk ![c1,c2])` formed by the tensor. -/ def pairIsoSep {c1 c2 : C} : F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2) ≅ (lift.obj F).obj (OverColor.mk ![c1,c2]) := by symm @@ -200,7 +200,7 @@ lemma pairIsoSep_β {c1 c2 : C} (x : ↑(F.obj { as := c1 } ⊗ F.obj { as := c2 /-- The isomorphism between `F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2) ⊗ F.obj (Discrete.mk c3)` and - `(lift.obj F).obj (OverColor.mk ![c1,c2])` formed by the tensorate. -/ + `(lift.obj F).obj (OverColor.mk ![c1,c2])` formed by the tensor. -/ def tripleIsoSep {c1 c2 c3 : C} : F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2) ⊗ F.obj (Discrete.mk c3) ≅ (lift.obj F).obj (OverColor.mk ![c1,c2,c3]) := diff --git a/HepLean/Tensors/OverColor/Lift.lean b/HepLean/Tensors/OverColor/Lift.lean index dd3fc41..af723d1 100644 --- a/HepLean/Tensors/OverColor/Lift.lean +++ b/HepLean/Tensors/OverColor/Lift.lean @@ -16,7 +16,7 @@ sense that it is a section of the forgetful functor Functors in `Discrete C ⥤ Rep k G` form the basic building blocks of tensor structures. The fact that they extend to monoidal functors `OverColor C ⥤ Rep k G` allows us to -interfact more generally with tensors. +interact more generally with tensors. -/ @@ -30,7 +30,7 @@ variable {C k : Type} [CommRing k] {G : Type} [Group G] namespace Discrete -/-- Takes a homorphism in `Discrete C` to an isomorphism built on the same objects. -/ +/-- Takes a homomorphism in `Discrete C` to an isomorphism built on the same objects. -/ def homToIso {c1 c2 : Discrete C} (h : c1 ⟶ c2) : c1 ≅ c2 := Discrete.eqToIso (Discrete.eq_of_hom h) @@ -40,7 +40,7 @@ namespace lift noncomputable section variable (F F' : Discrete C ⥤ Rep k G) (η : F ⟶ F') -/-- Takes a homorphisms of `Discrete C` to an isomorphism `F.obj c1 ≅ F.obj c2`. -/ +/-- Takes a homomorphism of `Discrete C` to an isomorphism `F.obj c1 ≅ F.obj c2`. -/ def discreteFunctorMapIso {c1 c2 : Discrete C} (h : c1 ⟶ c2) : F.obj c1 ≅ F.obj c2 := F.mapIso (Discrete.homToIso h) @@ -83,7 +83,7 @@ lemma discreteFunctorMapEqIso_comm_ρ {c1 c2 : Discrete C} (h : c1.as = c2.as) ( Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl -/-- Given a object in `OverColor Color` the correpsonding tensor product of representations. -/ +/-- Given a object in `OverColor Color` the corresponding tensor product of representations. -/ def objObj' (f : OverColor C) : Rep k G := Rep.of { toFun := fun M => PiTensorProduct.map (fun x => (F.obj (Discrete.mk (f.hom x))).ρ M), @@ -127,7 +127,7 @@ open TensorProduct in lemma objObj'_V_carrier (f : OverColor C) : (objObj' F f).V = ⨂[k] (i : f.left), F.obj (Discrete.mk (f.hom i)) := rfl -/-- Given a morphism in `OverColor C` the corresopnding linear equivalence between `obj' _` +/-- Given a morphism in `OverColor C` the corresponding linear equivalence between `obj' _` induced by reindexing. -/ def mapToLinearEquiv' {f g : OverColor C} (m : f ⟶ g) : (objObj' F f).V ≃ₗ[k] (objObj' F g).V := (PiTensorProduct.reindex k (fun x => (F.obj (Discrete.mk (f.hom x)))) @@ -148,7 +148,7 @@ lemma mapToLinearEquiv'_tprod {f g : OverColor C} (m : f ⟶ g) rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod] rfl -/-- Given a morphism in `OverColor C` the corresopnding map of representations induced by +/-- Given a morphism in `OverColor C` the corresponding map of representations induced by reindexing. -/ def objMap' {f g : OverColor C} (m : f ⟶ g) : objObj' F f ⟶ objObj' F g where hom := (mapToLinearEquiv' F m).toLinearMap @@ -198,7 +198,7 @@ def ε : 𝟙_ (Rep k G) ≅ objObj' F (𝟙_ (OverColor C)) := erw [objObj'_ρ_empty F g] rfl) -/-- An auxillary equivalence, and trivial, of modules needed to define `μModEquiv`. -/ +/-- An auxiliary equivalence, and trivial, of modules needed to define `μModEquiv`. -/ def discreteSumEquiv {X Y : OverColor C} (i : X.left ⊕ Y.left) : Sum.elim (fun i => F.obj (Discrete.mk (X.hom i))) (fun i => F.obj (Discrete.mk (Y.hom i))) i ≃ₗ[k] F.obj (Discrete.mk ((X ⊗ Y).hom i)) := @@ -215,7 +215,7 @@ def discreteSumEquiv' {X Y : Type} {cX : X → C} {cY : Y → C} (i : X ⊕ Y) : | Sum.inl _ => LinearEquiv.refl _ _ | Sum.inr _ => LinearEquiv.refl _ _ -/-- The equivalence of modules corresonding to the tensorate. -/ +/-- The equivalence of modules corresponding to the tensor. -/ def μModEquiv (X Y : OverColor C) : (objObj' F X ⊗ objObj' F Y).V ≃ₗ[k] objObj' F (X ⊗ Y) := HepLean.PiTensorProduct.tmulEquiv ≪≫ₗ PiTensorProduct.congr (discreteSumEquiv F) @@ -238,7 +238,7 @@ lemma μModEquiv_tmul_tprod {X Y : OverColor C} rw [PiTensorProduct.congr_tprod] rfl -/-- The natural isomorphism corresponding to the tensorate. -/ +/-- The natural isomorphism corresponding to the tensor. -/ def μ (X Y : OverColor C) : objObj' F X ⊗ objObj' F Y ≅ objObj' F (X ⊗ Y) := Action.mkIso (μModEquiv F X Y).toModuleIso (fun M => by diff --git a/HepLean/Tensors/TensorSpecies/Contractions/Categorical.lean b/HepLean/Tensors/TensorSpecies/Contractions/Categorical.lean index cc06d67..2857f92 100644 --- a/HepLean/Tensors/TensorSpecies/Contractions/Categorical.lean +++ b/HepLean/Tensors/TensorSpecies/Contractions/Categorical.lean @@ -27,7 +27,7 @@ open TensorTree variable {S : TensorSpecies} -/-- Th map built contracting a 1-tensor with a 2-tensor using basic categorical consstructions.s -/ +/-- Th map built contracting a 1-tensor with a 2-tensor using basic categorical constructions. -/ def contrOneTwoLeft {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1])) (y : S.F.obj (OverColor.mk ![S.τ c1, c2])) : S.F.obj (OverColor.mk ![c2]) := diff --git a/HepLean/Tensors/TensorSpecies/Contractions/ContrMap.lean b/HepLean/Tensors/TensorSpecies/Contractions/ContrMap.lean index b1dc6c3..f73b558 100644 --- a/HepLean/Tensors/TensorSpecies/Contractions/ContrMap.lean +++ b/HepLean/Tensors/TensorSpecies/Contractions/ContrMap.lean @@ -22,7 +22,7 @@ namespace TensorSpecies variable (S : TensorSpecies) -/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo` +/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` constructed by `finExtractTwo` under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/ def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :