feat: Cardinality of involutions and refactor
This commit is contained in:
parent
840d16a581
commit
1ab0c6f769
6 changed files with 1028 additions and 1197 deletions
572
HepLean/Mathematics/Fin/Involutions.lean
Normal file
572
HepLean/Mathematics/Fin/Involutions.lean
Normal file
|
@ -0,0 +1,572 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.LinearAlgebra.PiTensorProduct
|
||||
import Mathlib.Tactic.Polyrith
|
||||
import Mathlib.Tactic.Linarith
|
||||
import Mathlib.Data.Nat.Factorial.DoubleFactorial
|
||||
/-!
|
||||
# Fin involutions
|
||||
|
||||
Some properties of involutions of `Fin n`.
|
||||
|
||||
These involutions are used in e.g. proving results about Wick contractions.
|
||||
|
||||
-/
|
||||
namespace HepLean.Fin
|
||||
|
||||
open Nat
|
||||
|
||||
def involutionCons (n : ℕ) : {f : Fin n.succ → Fin n.succ // Function.Involutive f } ≃
|
||||
(f : {f : Fin n → Fin n // Function.Involutive f}) × {i : Option (Fin n) //
|
||||
∀ (h : i.isSome), f.1 (Option.get i h) = (Option.get i h)} where
|
||||
toFun f := ⟨⟨
|
||||
fun i =>
|
||||
if h : f.1 i.succ = 0 then i
|
||||
else Fin.pred (f.1 i.succ) h , by
|
||||
intro i
|
||||
by_cases h : f.1 i.succ = 0
|
||||
· simp [h]
|
||||
· simp [h]
|
||||
simp [f.2 i.succ]
|
||||
intro h
|
||||
exact False.elim (Fin.succ_ne_zero i h)⟩,
|
||||
⟨if h : f.1 0 = 0 then none else Fin.pred (f.1 0) h , by
|
||||
by_cases h0 : f.1 0 = 0
|
||||
· simp [h0]
|
||||
· simp [h0]
|
||||
refine fun h => False.elim (h (f.2 0))⟩⟩
|
||||
invFun f := ⟨
|
||||
if h : (f.2.1).isSome then
|
||||
Fin.cons (f.2.1.get h).succ (Function.update (Fin.succ ∘ f.1.1) (f.2.1.get h) 0)
|
||||
else
|
||||
Fin.cons 0 (Fin.succ ∘ f.1.1)
|
||||
, by
|
||||
by_cases hs : (f.2.1).isSome
|
||||
· simp only [Nat.succ_eq_add_one, hs, ↓reduceDIte, Fin.coe_eq_castSucc]
|
||||
let a := f.2.1.get hs
|
||||
change Function.Involutive (Fin.cons a.succ (Function.update (Fin.succ ∘ ↑f.fst) a 0))
|
||||
intro i
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | ⟨j, hj⟩
|
||||
· subst hi
|
||||
rw [Fin.cons_zero, Fin.cons_succ]
|
||||
simp
|
||||
· subst hj
|
||||
rw [Fin.cons_succ]
|
||||
by_cases hja : j = a
|
||||
· subst hja
|
||||
simp
|
||||
· rw [Function.update_apply ]
|
||||
rw [if_neg hja]
|
||||
simp
|
||||
have hf2 := f.2.2 hs
|
||||
change f.1.1 a = a at hf2
|
||||
have hjf1 : f.1.1 j ≠ a := by
|
||||
by_contra hn
|
||||
have haj : j = f.1.1 a := by
|
||||
rw [← hn]
|
||||
rw [f.1.2]
|
||||
rw [hf2] at haj
|
||||
exact hja haj
|
||||
rw [Function.update_apply, if_neg hjf1]
|
||||
simp
|
||||
rw [f.1.2]
|
||||
· simp [hs]
|
||||
intro i
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | ⟨j, hj⟩
|
||||
· subst hi
|
||||
simp
|
||||
· subst hj
|
||||
simp
|
||||
rw [f.1.2]⟩
|
||||
left_inv f := by
|
||||
match f with
|
||||
| ⟨f, hf⟩ =>
|
||||
simp
|
||||
ext i
|
||||
by_cases h0 : f 0 = 0
|
||||
· simp [h0]
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | ⟨j, hj⟩
|
||||
· subst hi
|
||||
simp [h0]
|
||||
· subst hj
|
||||
simp [h0]
|
||||
by_cases hj : f j.succ =0
|
||||
· rw [← h0] at hj
|
||||
have hn := Function.Involutive.injective hf hj
|
||||
exact False.elim (Fin.succ_ne_zero j hn)
|
||||
· simp [hj]
|
||||
rw [Fin.ext_iff] at hj
|
||||
simp at hj
|
||||
omega
|
||||
· rw [if_neg h0]
|
||||
by_cases hf' : i = f 0
|
||||
· subst hf'
|
||||
simp
|
||||
rw [hf]
|
||||
simp
|
||||
· rw [Function.update_apply, if_neg hf']
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | ⟨j, hj⟩
|
||||
· subst hi
|
||||
simp
|
||||
· subst hj
|
||||
simp
|
||||
by_cases hj : f j.succ =0
|
||||
· rw [← hj] at hf'
|
||||
rw [hf] at hf'
|
||||
simp at hf'
|
||||
· simp [hj]
|
||||
rw [Fin.ext_iff] at hj
|
||||
simp at hj
|
||||
omega
|
||||
right_inv f := by
|
||||
match f with
|
||||
| ⟨⟨f, hf⟩, ⟨f0, hf0⟩⟩ =>
|
||||
ext i
|
||||
· simp
|
||||
by_cases hs : f0.isSome
|
||||
· simp [hs]
|
||||
by_cases hi : i = f0.get hs
|
||||
· simp [hi, Function.update_apply]
|
||||
exact Eq.symm (Fin.val_eq_of_eq (hf0 hs))
|
||||
· simp [hi]
|
||||
split
|
||||
· rename_i h
|
||||
exact False.elim (Fin.succ_ne_zero (f i) h)
|
||||
· rfl
|
||||
· simp [hs]
|
||||
split
|
||||
· rename_i h
|
||||
exact False.elim (Fin.succ_ne_zero (f i) h)
|
||||
· rfl
|
||||
· simp only [Nat.succ_eq_add_one, Option.mem_def,
|
||||
Option.dite_none_left_eq_some, Option.some.injEq]
|
||||
by_cases hs : f0.isSome
|
||||
· simp only [hs, ↓reduceDIte]
|
||||
simp [Fin.cons_zero]
|
||||
have hx : ¬ (f0.get hs).succ = 0 := (Fin.succ_ne_zero (f0.get hs))
|
||||
simp [hx]
|
||||
refine Iff.intro (fun hi => ?_) (fun hi => ?_)
|
||||
· rw [← hi]
|
||||
exact
|
||||
Option.eq_some_of_isSome
|
||||
(Eq.mpr_prop (Eq.refl (f0.isSome = true))
|
||||
(of_eq_true (Eq.trans (congrArg (fun x => x = true) hs) (eq_self true))))
|
||||
· subst hi
|
||||
exact rfl
|
||||
· simp [hs]
|
||||
simp at hs
|
||||
subst hs
|
||||
exact ne_of_beq_false rfl
|
||||
|
||||
lemma involutionCons_ext {n : ℕ} {f1 f2 : (f : {f : Fin n → Fin n // Function.Involutive f}) ×
|
||||
{i : Option (Fin n) // ∀ (h : i.isSome), f.1 (Option.get i h) = (Option.get i h)}}
|
||||
(h1 : f1.1 = f2.1) (h2 : f1.2 = Equiv.subtypeEquivRight (by rw [h1]; simp) f2.2) : f1 = f2 := by
|
||||
cases f1
|
||||
cases f2
|
||||
simp at h1 h2
|
||||
subst h1
|
||||
rename_i fst snd snd_1
|
||||
simp_all only [Sigma.mk.inj_iff, heq_eq_eq, true_and]
|
||||
obtain ⟨val, property⟩ := fst
|
||||
obtain ⟨val_1, property_1⟩ := snd
|
||||
obtain ⟨val_2, property_2⟩ := snd_1
|
||||
simp_all only
|
||||
rfl
|
||||
|
||||
|
||||
def involutionAddEquiv {n : ℕ} (f : {f : Fin n → Fin n // Function.Involutive f}) :
|
||||
{i : Option (Fin n) // ∀ (h : i.isSome), f.1 (Option.get i h) = (Option.get i h)} ≃
|
||||
Option (Fin (Finset.univ.filter fun i => f.1 i = i).card) := by
|
||||
let e1 : {i : Option (Fin n) // ∀ (h : i.isSome), f.1 (Option.get i h) = (Option.get i h)}
|
||||
≃ Option {i : Fin n // f.1 i = i} :=
|
||||
{ toFun := fun i => match i with
|
||||
| ⟨some i, h⟩ => some ⟨i, by simpa using h⟩
|
||||
| ⟨none, h⟩ => none
|
||||
invFun := fun i => match i with
|
||||
| some ⟨i, h⟩ => ⟨some i, by simpa using h⟩
|
||||
| none => ⟨none, by simp⟩
|
||||
left_inv := by
|
||||
intro a
|
||||
cases a
|
||||
aesop
|
||||
right_inv := by
|
||||
intro a
|
||||
cases a
|
||||
rfl
|
||||
simp_all only [Subtype.coe_eta] }
|
||||
let s : Finset (Fin n) := Finset.univ.filter fun i => f.1 i = i
|
||||
let e2' : { i : Fin n // f.1 i = i} ≃ {i // i ∈ s} := by
|
||||
refine Equiv.subtypeEquivProp ?h
|
||||
funext i
|
||||
simp [s]
|
||||
let e2 : {i // i ∈ s} ≃ Fin (Finset.card s) := by
|
||||
refine (Finset.orderIsoOfFin _ ?_).symm.toEquiv
|
||||
simp [s]
|
||||
refine e1.trans (Equiv.optionCongr (e2'.trans (e2)))
|
||||
|
||||
|
||||
lemma involutionAddEquiv_none_image_zero {n : ℕ} :
|
||||
{f : {f : Fin n.succ → Fin n.succ // Function.Involutive f}}
|
||||
→ involutionAddEquiv (involutionCons n f).1 (involutionCons n f).2 = none
|
||||
→ f.1 ⟨0, Nat.zero_lt_succ n⟩ = ⟨0, Nat.zero_lt_succ n⟩ := by
|
||||
intro f h
|
||||
simp only [Nat.succ_eq_add_one, involutionCons, Equiv.coe_fn_mk, involutionAddEquiv,
|
||||
Option.isSome_some, Option.get_some, Option.isSome_none, Equiv.trans_apply,
|
||||
Equiv.optionCongr_apply, Equiv.coe_trans, RelIso.coe_fn_toEquiv, Option.map_eq_none'] at h
|
||||
simp_all only [List.length_cons, Fin.zero_eta]
|
||||
obtain ⟨val, property⟩ := f
|
||||
simp_all only [List.length_cons]
|
||||
split at h
|
||||
next i i_1 h_1 heq =>
|
||||
split at heq
|
||||
next h_2 => simp_all only [reduceCtorEq]
|
||||
next h_2 => simp_all only [reduceCtorEq]
|
||||
next i h_1 heq =>
|
||||
split at heq
|
||||
next h_2 => simp_all only
|
||||
next h_2 => simp_all only [Subtype.mk.injEq, reduceCtorEq]
|
||||
|
||||
lemma involutionAddEquiv_cast {n : ℕ} {f1 f2 : {f : Fin n → Fin n // Function.Involutive f}}
|
||||
(hf : f1 = f2):
|
||||
involutionAddEquiv f1 = (Equiv.subtypeEquivRight (by rw [hf]; simp)).trans
|
||||
((involutionAddEquiv f2).trans (Equiv.optionCongr (finCongr (by rw [hf])))):= by
|
||||
subst hf
|
||||
simp
|
||||
rfl
|
||||
|
||||
|
||||
lemma involutionAddEquiv_cast' {m : ℕ} {f1 f2 : {f : Fin m → Fin m // Function.Involutive f}}
|
||||
{N : ℕ} (hf : f1 = f2) (n : Option (Fin N)) (hn1 : N = (Finset.filter (fun i => f1.1 i = i) Finset.univ).card)
|
||||
(hn2 : N = (Finset.filter (fun i => f2.1 i = i) Finset.univ).card):
|
||||
HEq ((involutionAddEquiv f1).symm (Option.map (finCongr hn1) n)) ((involutionAddEquiv f2).symm (Option.map (finCongr hn2) n)) := by
|
||||
subst hf
|
||||
rfl
|
||||
|
||||
lemma involutionAddEquiv_none_succ {n : ℕ}
|
||||
{f : {f : Fin n.succ → Fin n.succ // Function.Involutive f}}
|
||||
(h : involutionAddEquiv (involutionCons n f).1 (involutionCons n f).2 = none)
|
||||
(x : Fin n) : f.1 x.succ = x.succ ↔ (involutionCons n f).1.1 x = x := by
|
||||
simp [involutionCons]
|
||||
have hn' := involutionAddEquiv_none_image_zero h
|
||||
have hx : ¬ f.1 x.succ = ⟨0, Nat.zero_lt_succ n⟩:= by
|
||||
rw [← hn']
|
||||
exact fun hn => Fin.succ_ne_zero x (Function.Involutive.injective f.2 hn)
|
||||
apply Iff.intro
|
||||
· intro h2 h3
|
||||
rw [Fin.ext_iff]
|
||||
simp [h2]
|
||||
· intro h2
|
||||
have h2' := h2 hx
|
||||
conv_rhs => rw [← h2']
|
||||
simp
|
||||
|
||||
lemma involutionAddEquiv_isSome_image_zero {n : ℕ} :
|
||||
{f : {f : Fin n.succ → Fin n.succ // Function.Involutive f}}
|
||||
→ (involutionAddEquiv (involutionCons n f).1 (involutionCons n f).2).isSome
|
||||
→ ¬ f.1 ⟨0, Nat.zero_lt_succ n⟩ = ⟨0, Nat.zero_lt_succ n⟩ := by
|
||||
intro f hf
|
||||
simp [involutionAddEquiv, involutionCons] at hf
|
||||
simp_all only [List.length_cons, Fin.zero_eta]
|
||||
obtain ⟨val, property⟩ := f
|
||||
simp_all only [List.length_cons]
|
||||
apply Aesop.BuiltinRules.not_intro
|
||||
intro a
|
||||
simp_all only [↓reduceDIte, Option.isSome_none, Bool.false_eq_true]
|
||||
|
||||
def involutionNoFixedEquivSum {n : ℕ} :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f
|
||||
∧ ∀ i, f i ≠ i} ≃ Σ (k : Fin (2 * n + 1)),
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f
|
||||
∧ (∀ i, f i ≠ i) ∧ f 0 = k.succ} where
|
||||
toFun f := ⟨(f.1 0).pred (f.2.2 0), ⟨f.1, f.2.1, by simpa using f.2.2⟩⟩
|
||||
invFun f := ⟨f.2.1, ⟨f.2.2.1, f.2.2.2.1⟩⟩
|
||||
left_inv f := by
|
||||
rfl
|
||||
right_inv f := by
|
||||
simp
|
||||
ext
|
||||
· simp
|
||||
rw [f.2.2.2.2]
|
||||
simp
|
||||
· simp
|
||||
|
||||
/-!
|
||||
|
||||
## Equivalences of involutions with no fixed points.
|
||||
|
||||
The main aim of thes equivalences is to define `involutionNoFixedZeroEquivProd`.
|
||||
|
||||
-/
|
||||
|
||||
def involutionNoFixedZeroSetEquivEquiv {n : ℕ}
|
||||
(k : Fin (2 * n + 1)) (e : Fin (2 * n.succ) ≃ Fin (2 * n.succ)) :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f
|
||||
∧ (∀ i, f i ≠ i) ∧ f 0 = k.succ} ≃
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive (e.symm ∘ f ∘ e) ∧
|
||||
(∀ i, (e.symm ∘ f ∘ e) i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} where
|
||||
toFun f := ⟨e ∘ f.1 ∘ e.symm, by
|
||||
intro i
|
||||
simp
|
||||
rw [f.2.1], by
|
||||
simpa using f.2.2.1, by simpa using f.2.2.2⟩
|
||||
invFun f := ⟨e.symm ∘ f.1 ∘ e, by
|
||||
intro i
|
||||
simp
|
||||
have hf2 := f.2.1 i
|
||||
simpa using hf2, by
|
||||
simpa using f.2.2.1, by simpa using f.2.2.2⟩
|
||||
left_inv f := by
|
||||
ext i
|
||||
simp
|
||||
right_inv f := by
|
||||
ext i
|
||||
simp
|
||||
|
||||
def involutionNoFixedZeroSetEquivSetEquiv {n : ℕ} (k : Fin (2 * n + 1)) (e : Fin (2 * n.succ) ≃ Fin (2 * n.succ)) :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive (e.symm ∘ f ∘ e) ∧
|
||||
(∀ i, (e.symm ∘ f ∘ e) i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} ≃
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} := by
|
||||
refine Equiv.subtypeEquivRight ?_
|
||||
intro f
|
||||
have h1 : Function.Involutive (⇑e.symm ∘ f ∘ ⇑e) ↔ Function.Involutive f := by
|
||||
apply Iff.intro
|
||||
· intro h i
|
||||
have hi := h (e.symm i)
|
||||
simpa using hi
|
||||
· intro h i
|
||||
have hi := h (e i)
|
||||
simp [hi]
|
||||
rw [h1]
|
||||
simp
|
||||
intro h1 h2
|
||||
apply Iff.intro
|
||||
· intro h i
|
||||
have hi := h (e.symm i)
|
||||
simpa using hi
|
||||
· intro h i
|
||||
have hi := h (e i)
|
||||
by_contra hn
|
||||
nth_rewrite 2 [← hn] at hi
|
||||
simp at hi
|
||||
|
||||
|
||||
def involutionNoFixedZeroSetEquivEquiv' {n : ℕ} (k : Fin (2 * n + 1)) (e : Fin (2 * n.succ) ≃ Fin (2 * n.succ)) :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ}
|
||||
≃ {f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i) ∧ f (e 0) = e k.succ} := by
|
||||
refine Equiv.subtypeEquivRight ?_
|
||||
simp
|
||||
intro f hi h1
|
||||
exact Equiv.symm_apply_eq e
|
||||
|
||||
def involutionNoFixedZeroSetEquivSetOne {n : ℕ} (k : Fin (2 * n + 1)) :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i) ∧ f 0 = k.succ}
|
||||
≃ {f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i) ∧ f 0 = 1} := by
|
||||
refine Equiv.trans (involutionNoFixedZeroSetEquivEquiv k (Equiv.swap k.succ 1)) ?_
|
||||
refine Equiv.trans (involutionNoFixedZeroSetEquivSetEquiv k (Equiv.swap k.succ 1)) ?_
|
||||
refine Equiv.trans (involutionNoFixedZeroSetEquivEquiv' k (Equiv.swap k.succ 1)) ?_
|
||||
refine Equiv.subtypeEquivRight ?_
|
||||
simp
|
||||
intro f hi h1
|
||||
rw [Equiv.swap_apply_of_ne_of_ne]
|
||||
· exact Ne.symm (Fin.succ_ne_zero k)
|
||||
· exact Fin.zero_ne_one
|
||||
|
||||
def involutionNoFixedSetOne {n : ℕ} :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i) ∧ f 0 = 1} ≃
|
||||
{f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i)} where
|
||||
toFun f := by
|
||||
have hf1 : f.1 1 = 0 := by
|
||||
have hf := f.2.2.2
|
||||
simp [← hf]
|
||||
rw [f.2.1]
|
||||
let f' := f.1 ∘ Fin.succ ∘ Fin.succ
|
||||
have hf' (i : Fin (2 * n)) : f' i ≠ 0 := by
|
||||
simp [f']
|
||||
simp [← hf1]
|
||||
by_contra hn
|
||||
have hn' := Function.Involutive.injective f.2.1 hn
|
||||
simp [Fin.ext_iff] at hn'
|
||||
let f'' := fun i => (f' i).pred (hf' i)
|
||||
have hf'' (i : Fin (2 * n)) : f'' i ≠ 0 := by
|
||||
simp [f'']
|
||||
rw [@Fin.pred_eq_iff_eq_succ]
|
||||
simp [f']
|
||||
simp [← f.2.2.2 ]
|
||||
by_contra hn
|
||||
have hn' := Function.Involutive.injective f.2.1 hn
|
||||
simp [Fin.ext_iff] at hn'
|
||||
let f''' := fun i => (f'' i).pred (hf'' i)
|
||||
refine ⟨f''', ?_, ?_⟩
|
||||
· intro i
|
||||
simp [f''', f'', f']
|
||||
simp [f.2.1 i.succ.succ]
|
||||
· intro i
|
||||
simp [f''', f'', f']
|
||||
rw [@Fin.pred_eq_iff_eq_succ]
|
||||
rw [@Fin.pred_eq_iff_eq_succ]
|
||||
exact f.2.2.1 i.succ.succ
|
||||
invFun f := by
|
||||
let f' := fun (i : Fin (2 * n.succ))=>
|
||||
match i with
|
||||
| ⟨0, h⟩ => 1
|
||||
| ⟨1, h⟩ => 0
|
||||
| ⟨(Nat.succ (Nat.succ n)), h⟩ => (f.1 ⟨n, by omega⟩).succ.succ
|
||||
refine ⟨f', ?_, ?_, ?_⟩
|
||||
· intro i
|
||||
match i with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨1, h⟩ => rfl
|
||||
| ⟨(Nat.succ (Nat.succ m)), h⟩ =>
|
||||
simp [f']
|
||||
split
|
||||
· rename_i h
|
||||
simp at h
|
||||
exact False.elim (Fin.succ_ne_zero (f.1 ⟨m, _⟩).succ h)
|
||||
· rename_i h
|
||||
simp [Fin.ext_iff] at h
|
||||
· rename_i h
|
||||
rename_i x r
|
||||
simp_all [Fin.ext_iff]
|
||||
have hfn {a b : ℕ} {ha : a < 2 * n} {hb : b < 2 * n}
|
||||
(hab : ↑(f.1 ⟨a, ha⟩) = b): ↑(f.1 ⟨b, hb⟩) = a := by
|
||||
have ht : f.1 ⟨a, ha⟩ = ⟨b, hb⟩ := by
|
||||
simp [hab, Fin.ext_iff]
|
||||
rw [← ht, f.2.1]
|
||||
exact hfn h
|
||||
· intro i
|
||||
match i with
|
||||
| ⟨0, h⟩ =>
|
||||
simp [f']
|
||||
split
|
||||
· rename_i h
|
||||
simp
|
||||
· rename_i h
|
||||
simp [Fin.ext_iff] at h
|
||||
· rename_i h
|
||||
simp [Fin.ext_iff] at h
|
||||
| ⟨1, h⟩ =>
|
||||
simp [f']
|
||||
split
|
||||
· rename_i h
|
||||
simp at h
|
||||
· rename_i h
|
||||
simp
|
||||
· rename_i h
|
||||
simp [Fin.ext_iff] at h
|
||||
| ⟨(Nat.succ (Nat.succ m)), h⟩ =>
|
||||
simp [f', Fin.ext_iff]
|
||||
have hf:= f.2.2 ⟨m, by exact Nat.add_lt_add_iff_right.mp h⟩
|
||||
simp [Fin.ext_iff] at hf
|
||||
omega
|
||||
· simp [f']
|
||||
split
|
||||
· rename_i h
|
||||
simp
|
||||
· rename_i h
|
||||
simp at h
|
||||
· rename_i h
|
||||
simp [Fin.ext_iff] at h
|
||||
left_inv f := by
|
||||
have hf1 : f.1 1 = 0 := by
|
||||
have hf := f.2.2.2
|
||||
simp [← hf]
|
||||
rw [f.2.1]
|
||||
simp
|
||||
ext i
|
||||
simp
|
||||
split
|
||||
· simp
|
||||
rw [f.2.2.2]
|
||||
simp
|
||||
· simp
|
||||
rw [hf1]
|
||||
simp
|
||||
· rfl
|
||||
right_inv f := by
|
||||
simp
|
||||
ext i
|
||||
simp
|
||||
split
|
||||
· rename_i h
|
||||
simp [Fin.ext_iff] at h
|
||||
· rename_i h
|
||||
simp [Fin.ext_iff] at h
|
||||
· rename_i h
|
||||
simp
|
||||
congr
|
||||
apply congrArg
|
||||
simp_all [Fin.ext_iff]
|
||||
|
||||
|
||||
def involutionNoFixedZeroSetEquiv {n : ℕ} (k : Fin (2 * n + 1)) :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
|
||||
(∀ i, f i ≠ i) ∧ f 0 = k.succ}
|
||||
≃ {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
|
||||
refine Equiv.trans (involutionNoFixedZeroSetEquivSetOne k) involutionNoFixedSetOne
|
||||
|
||||
def involutionNoFixedEquivSumSame {n : ℕ} :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
|
||||
≃ Σ (_ : Fin (2 * n + 1)), {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
|
||||
refine Equiv.trans involutionNoFixedEquivSum ?_
|
||||
refine Equiv.sigmaCongrRight involutionNoFixedZeroSetEquiv
|
||||
|
||||
def involutionNoFixedZeroEquivProd {n : ℕ} :
|
||||
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
|
||||
≃ Fin (2 * n + 1) × {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
|
||||
refine Equiv.trans involutionNoFixedEquivSumSame ?_
|
||||
exact Equiv.sigmaEquivProd (Fin (2 * n + 1))
|
||||
{ f // Function.Involutive f ∧ ∀ (i : Fin (2 * n)), f i ≠ i}
|
||||
|
||||
/-!
|
||||
|
||||
## Cardinality
|
||||
|
||||
-/
|
||||
|
||||
|
||||
instance {n : ℕ} : Fintype { f // Function.Involutive f ∧ ∀ (i : Fin n), f i ≠ i } := by
|
||||
haveI : DecidablePred fun x => Function.Involutive x := by
|
||||
intro f
|
||||
apply Fintype.decidableForallFintype (α := Fin n)
|
||||
haveI : DecidablePred fun x => Function.Involutive x ∧ ∀ (i : Fin n), x i ≠ i := by
|
||||
intro x
|
||||
apply instDecidableAnd
|
||||
apply Subtype.fintype
|
||||
|
||||
lemma involutionNoFixed_card_succ {n : ℕ} :
|
||||
Fintype.card {f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
|
||||
= (2 * n + 1) * Fintype.card {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
|
||||
rw [Fintype.card_congr (involutionNoFixedZeroEquivProd)]
|
||||
rw [Fintype.card_prod ]
|
||||
congr
|
||||
exact Fintype.card_fin (2 * n + 1)
|
||||
|
||||
|
||||
lemma involutionNoFixed_card_mul_two : (n : ℕ) →
|
||||
Fintype.card {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
|
||||
= (2 * n - 1)‼
|
||||
| 0 => rfl
|
||||
| Nat.succ n => by
|
||||
rw [involutionNoFixed_card_succ]
|
||||
rw [involutionNoFixed_card_mul_two n]
|
||||
exact Eq.symm (Nat.doubleFactorial_add_one (Nat.mul 2 n))
|
||||
|
||||
lemma involutionNoFixed_card_even : (n : ℕ) → (he : Even n) →
|
||||
Fintype.card {f : Fin n → Fin n // Function.Involutive f ∧ (∀ i, f i ≠ i)} = (n - 1)‼ := by
|
||||
intro n he
|
||||
obtain ⟨r, hr⟩ := he
|
||||
have hr' : n = 2 * r := by omega
|
||||
subst hr'
|
||||
exact involutionNoFixed_card_mul_two r
|
||||
|
||||
end HepLean.Fin
|
File diff suppressed because it is too large
Load diff
40
HepLean/PerturbationTheory/Contractions/Card.lean
Normal file
40
HepLean/PerturbationTheory/Contractions/Card.lean
Normal file
|
@ -0,0 +1,40 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Contractions.Involutions
|
||||
/-!
|
||||
|
||||
# Cardinality of full contractions
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
namespace Contractions
|
||||
|
||||
open HepLean.Fin
|
||||
open Nat
|
||||
|
||||
/-- There are `(φs.length - 1)‼` full contractions of a list `φs` with an even number of fields. -/
|
||||
lemma card_of_full_contractions_even {φs : List 𝓕} (he : Even φs.length ) :
|
||||
Fintype.card {c : Contractions φs // IsFull c} = (φs.length - 1)‼ := by
|
||||
rw [Fintype.card_congr (isFullInvolutionEquiv (φs := φs))]
|
||||
exact involutionNoFixed_card_even φs.length he
|
||||
|
||||
/-- There are no full contractions of a list with an odd number of fields. -/
|
||||
lemma card_of_full_contractions_odd {φs : List 𝓕} (ho : Odd φs.length ) :
|
||||
Fintype.card {c : Contractions φs // IsFull c} = 0 := by
|
||||
rw [Fintype.card_eq_zero_iff, isEmpty_subtype]
|
||||
intro c
|
||||
simp only [IsFull]
|
||||
by_contra hn
|
||||
have hc := uncontracted_length_even_iff c
|
||||
rw [hn] at hc
|
||||
simp at hc
|
||||
rw [← Nat.not_odd_iff_even] at hc
|
||||
exact hc ho
|
||||
|
||||
end Contractions
|
||||
|
||||
end Wick
|
|
@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Contractions.Basic
|
||||
import HepLean.Meta.Informal.Basic
|
||||
/-!
|
||||
|
||||
# Involutions
|
||||
|
@ -23,6 +22,7 @@ is given by the OEIS sequence A000085.
|
|||
namespace Wick
|
||||
|
||||
open HepLean.List
|
||||
open HepLean.Fin
|
||||
open FieldStatistic
|
||||
|
||||
variable {𝓕 : Type}
|
||||
|
@ -30,13 +30,366 @@ namespace Contractions
|
|||
|
||||
variable {l : List 𝓕}
|
||||
|
||||
informal_definition equivInvolution where
|
||||
math :≈ "There is an isomorphism between the type of contractions of a list `l` and
|
||||
the type of involutions from `Fin l.length` to `Fin l.length."
|
||||
/-!
|
||||
|
||||
## From Involution.
|
||||
|
||||
-/
|
||||
|
||||
def uncontractedFromInvolution : {φs : List 𝓕} →
|
||||
(f : {f : Fin φs.length → Fin φs.length // Function.Involutive f}) →
|
||||
{l : List 𝓕 // l.length = (Finset.univ.filter fun i => f.1 i = i).card}
|
||||
| [], _ => ⟨[], by simp⟩
|
||||
| φ :: φs, f =>
|
||||
let luc := uncontractedFromInvolution (involutionCons φs.length f).fst
|
||||
let n' := involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2
|
||||
if hn : n' = none then
|
||||
have hn' := involutionAddEquiv_none_image_zero (n := φs.length) (f := f) hn
|
||||
⟨optionEraseZ luc φ none, by
|
||||
simp [optionEraseZ]
|
||||
rw [← luc.2]
|
||||
conv_rhs => rw [Finset.card_filter]
|
||||
rw [Fin.sum_univ_succ]
|
||||
conv_rhs => erw [if_pos hn']
|
||||
ring_nf
|
||||
simp only [Nat.succ_eq_add_one, Mathlib.Vector.length_val, Nat.cast_id,
|
||||
add_right_inj]
|
||||
rw [Finset.card_filter]
|
||||
apply congrArg
|
||||
funext i
|
||||
refine ite_congr ?h.h.h₁ (congrFun rfl) (congrFun rfl)
|
||||
rw [involutionAddEquiv_none_succ hn]⟩
|
||||
else
|
||||
let n := n'.get (Option.isSome_iff_ne_none.mpr hn)
|
||||
let np : Fin luc.1.length := ⟨n.1, by
|
||||
rw [luc.2]
|
||||
exact n.prop⟩
|
||||
⟨optionEraseZ luc φ (some np), by
|
||||
let k' := (involutionCons φs.length f).2
|
||||
have hkIsSome : (k'.1).isSome := by
|
||||
simp [n', involutionAddEquiv ] at hn
|
||||
split at hn
|
||||
· simp_all only [reduceCtorEq, not_false_eq_true, Nat.succ_eq_add_one, Option.isSome_some, k']
|
||||
· simp_all only [not_true_eq_false]
|
||||
let k := k'.1.get hkIsSome
|
||||
rw [optionEraseZ_some_length]
|
||||
have hksucc : k.succ = f.1 ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
simp [k, k', involutionCons]
|
||||
have hzero : ⟨0, Nat.zero_lt_succ φs.length⟩ = f.1 k.succ := by
|
||||
rw [hksucc]
|
||||
rw [f.2]
|
||||
have hkcons : ((involutionCons φs.length) f).1.1 k = k := by
|
||||
exact k'.2 hkIsSome
|
||||
have hksuccNe : f.1 k.succ ≠ k.succ := by
|
||||
conv_rhs => rw [hksucc]
|
||||
exact fun hn => Fin.succ_ne_zero k (Function.Involutive.injective f.2 hn )
|
||||
have hluc : 1 ≤ luc.1.length := by
|
||||
simp
|
||||
use k
|
||||
simp [involutionCons]
|
||||
rw [hksucc, f.2]
|
||||
simp
|
||||
rw [propext (Nat.sub_eq_iff_eq_add' hluc)]
|
||||
have h0 : ¬ f.1 ⟨0, Nat.zero_lt_succ φs.length⟩ = ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
exact Option.isSome_dite'.mp hkIsSome
|
||||
conv_rhs =>
|
||||
rw [Finset.card_filter]
|
||||
erw [Fin.sum_univ_succ]
|
||||
erw [if_neg h0]
|
||||
simp only [Nat.succ_eq_add_one, Mathlib.Vector.length_val, List.length_cons,
|
||||
Nat.cast_id, zero_add]
|
||||
conv_rhs => lhs; rw [Eq.symm (Fintype.sum_ite_eq' k fun j => 1)]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
rw [Finset.card_filter]
|
||||
apply congrArg
|
||||
funext i
|
||||
by_cases hik : i = k
|
||||
· subst hik
|
||||
simp [hkcons, hksuccNe]
|
||||
· simp [hik]
|
||||
refine ite_congr ?_ (congrFun rfl) (congrFun rfl)
|
||||
simp [involutionCons]
|
||||
have hfi : f.1 i.succ ≠ ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
rw [hzero]
|
||||
by_contra hn
|
||||
have hik' := (Function.Involutive.injective f.2 hn)
|
||||
simp only [List.length_cons, Fin.succ_inj] at hik'
|
||||
exact hik hik'
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
have h' := h hfi
|
||||
conv_rhs => rw [← h']
|
||||
simp
|
||||
· intro h hfi
|
||||
simp [Fin.ext_iff]
|
||||
rw [h]
|
||||
simp⟩
|
||||
|
||||
lemma uncontractedFromInvolution_cons {φs : List 𝓕} {φ : 𝓕}
|
||||
(f : {f : Fin (φ :: φs).length → Fin (φ :: φs).length // Function.Involutive f}) :
|
||||
uncontractedFromInvolution f =
|
||||
optionEraseZ (uncontractedFromInvolution (involutionCons φs.length f).fst) φ
|
||||
(Option.map (finCongr ((uncontractedFromInvolution (involutionCons φs.length f).fst).2.symm))
|
||||
(involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2)) := by
|
||||
let luc := uncontractedFromInvolution (involutionCons φs.length f).fst
|
||||
let n' := involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2
|
||||
change _ = optionEraseZ luc φ
|
||||
(Option.map (finCongr ((uncontractedFromInvolution (involutionCons φs.length f).fst).2.symm)) n')
|
||||
dsimp [uncontractedFromInvolution]
|
||||
by_cases hn : n' = none
|
||||
· have hn' := hn
|
||||
simp [n'] at hn'
|
||||
simp [hn']
|
||||
rw [hn]
|
||||
rfl
|
||||
· have hn' := hn
|
||||
simp [n'] at hn'
|
||||
simp [hn']
|
||||
congr
|
||||
simp [n']
|
||||
simp_all only [Nat.succ_eq_add_one, not_false_eq_true, n', luc]
|
||||
obtain ⟨val, property⟩ := f
|
||||
obtain ⟨val_1, property_1⟩ := luc
|
||||
simp_all only [Nat.succ_eq_add_one, List.length_cons]
|
||||
ext a : 1
|
||||
simp_all only [Option.mem_def, Option.some.injEq, Option.map_eq_some', finCongr_apply]
|
||||
apply Iff.intro
|
||||
· intro a_1
|
||||
subst a_1
|
||||
apply Exists.intro
|
||||
· apply And.intro
|
||||
on_goal 2 => {rfl
|
||||
}
|
||||
· simp_all only [Option.some_get]
|
||||
· intro a_1
|
||||
obtain ⟨w, h⟩ := a_1
|
||||
obtain ⟨left, right⟩ := h
|
||||
subst right
|
||||
simp_all only [Option.get_some]
|
||||
rfl
|
||||
|
||||
def fromInvolutionAux : {l : List 𝓕} →
|
||||
(f : {f : Fin l.length → Fin l.length // Function.Involutive f}) →
|
||||
ContractionsAux l (uncontractedFromInvolution f)
|
||||
| [] => fun _ => ContractionsAux.nil
|
||||
| _ :: φs => fun f =>
|
||||
let f' := involutionCons φs.length f
|
||||
let c' := fromInvolutionAux f'.1
|
||||
let n' := Option.map (finCongr ((uncontractedFromInvolution f'.fst).2.symm))
|
||||
(involutionAddEquiv f'.1 f'.2)
|
||||
auxCongr (uncontractedFromInvolution_cons f).symm (ContractionsAux.cons n' c')
|
||||
|
||||
def fromInvolution {φs : List 𝓕} (f : {f : Fin φs.length → Fin φs.length // Function.Involutive f}) :
|
||||
Contractions φs := ⟨uncontractedFromInvolution f, fromInvolutionAux f⟩
|
||||
|
||||
lemma fromInvolution_cons {φs : List 𝓕} {φ : 𝓕}
|
||||
(f : {f : Fin (φ :: φs).length → Fin (φ :: φs).length // Function.Involutive f}) :
|
||||
let f' := involutionCons φs.length f
|
||||
fromInvolution f = consEquiv.symm
|
||||
⟨fromInvolution f'.1, Option.map (finCongr ((uncontractedFromInvolution f'.fst).2.symm))
|
||||
(involutionAddEquiv f'.1 f'.2)⟩ := by
|
||||
refine auxCongr_ext ?_ ?_
|
||||
· dsimp [fromInvolution]
|
||||
rw [uncontractedFromInvolution_cons]
|
||||
rfl
|
||||
· dsimp [fromInvolution, fromInvolutionAux]
|
||||
rfl
|
||||
|
||||
lemma fromInvolution_of_involutionCons
|
||||
{φs : List 𝓕} {φ : 𝓕}
|
||||
(f : {f : Fin (φs ).length → Fin (φs).length // Function.Involutive f})
|
||||
(n : { i : Option (Fin φs.length) // ∀ (h : i.isSome = true), f.1 (i.get h) = i.get h }):
|
||||
fromInvolution (φs := φ :: φs) ((involutionCons φs.length).symm ⟨f, n⟩) =
|
||||
consEquiv.symm
|
||||
⟨fromInvolution f, Option.map (finCongr ((uncontractedFromInvolution f).2.symm))
|
||||
(involutionAddEquiv f n)⟩ := by
|
||||
rw [fromInvolution_cons]
|
||||
congr 1
|
||||
simp
|
||||
rw [Equiv.apply_symm_apply]
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## To Involution.
|
||||
|
||||
-/
|
||||
|
||||
def toInvolution : {φs : List 𝓕} → (c : Contractions φs) →
|
||||
{f : {f : Fin φs.length → Fin φs.length // Function.Involutive f} //
|
||||
uncontractedFromInvolution f = c.1}
|
||||
| [], ⟨[], ContractionsAux.nil⟩ => ⟨⟨fun i => i, by
|
||||
intro i
|
||||
simp⟩, by rfl⟩
|
||||
| φ :: φs, ⟨_, .cons (φsᵤₙ := aux) n c⟩ => by
|
||||
let ⟨⟨f', hf1⟩, hf2⟩ := toInvolution ⟨aux, c⟩
|
||||
let n' : Option (Fin (uncontractedFromInvolution ⟨f', hf1⟩).1.length) :=
|
||||
Option.map (finCongr (by rw [hf2])) n
|
||||
let F := (involutionCons φs.length).symm ⟨⟨f', hf1⟩,
|
||||
(involutionAddEquiv ⟨f', hf1⟩).symm
|
||||
(Option.map (finCongr ((uncontractedFromInvolution ⟨f', hf1⟩).2)) n')⟩
|
||||
refine ⟨F, ?_⟩
|
||||
have hF0 : ((involutionCons φs.length) F) = ⟨⟨f', hf1⟩,
|
||||
(involutionAddEquiv ⟨f', hf1⟩).symm
|
||||
(Option.map (finCongr ((uncontractedFromInvolution ⟨f', hf1⟩).2)) n')⟩ := by
|
||||
simp [F]
|
||||
have hF1 : ((involutionCons φs.length) F).fst = ⟨f', hf1⟩ := by
|
||||
rw [hF0]
|
||||
have hF2L : ((uncontractedFromInvolution ⟨f', hf1⟩)).1.length =
|
||||
(Finset.filter (fun i => ((involutionCons φs.length) F).1.1 i = i) Finset.univ).card := by
|
||||
apply Eq.trans ((uncontractedFromInvolution ⟨f', hf1⟩)).2
|
||||
congr
|
||||
rw [hF1]
|
||||
have hF2 : ((involutionCons φs.length) F).snd = (involutionAddEquiv ((involutionCons φs.length) F).fst).symm
|
||||
(Option.map (finCongr hF2L) n') := by
|
||||
rw [@Sigma.subtype_ext_iff] at hF0
|
||||
ext1
|
||||
rw [hF0.2]
|
||||
simp
|
||||
congr 1
|
||||
· rw [hF1]
|
||||
· refine involutionAddEquiv_cast' ?_ n' _ _
|
||||
rw [hF1]
|
||||
rw [uncontractedFromInvolution_cons]
|
||||
have hx := (toInvolution ⟨aux, c⟩).2
|
||||
simp at hx
|
||||
simp
|
||||
refine optionEraseZ_ext ?_ ?_ ?_
|
||||
· dsimp [F]
|
||||
rw [Equiv.apply_symm_apply]
|
||||
simp
|
||||
rw [← hx]
|
||||
simp_all only
|
||||
· rfl
|
||||
· simp [hF2]
|
||||
dsimp [n']
|
||||
simp [finCongr]
|
||||
simp only [Nat.succ_eq_add_one, id_eq, eq_mpr_eq_cast, F, n']
|
||||
ext a : 1
|
||||
simp only [Option.mem_def, Option.map_eq_some', Function.comp_apply, Fin.cast_trans,
|
||||
Fin.cast_eq_self, exists_eq_right]
|
||||
|
||||
lemma toInvolution_length {φs φsᵤₙ : List 𝓕} {c : ContractionsAux φs φsᵤₙ} :
|
||||
φsᵤₙ.length = (Finset.filter (fun i => (toInvolution ⟨φsᵤₙ, c⟩).1.1 i = i) Finset.univ).card
|
||||
:= by
|
||||
have h2 := (toInvolution ⟨φsᵤₙ, c⟩).2
|
||||
simp at h2
|
||||
conv_lhs => rw [← h2]
|
||||
exact Mathlib.Vector.length_val (uncontractedFromInvolution (toInvolution ⟨φsᵤₙ, c⟩).1)
|
||||
|
||||
lemma toInvolution_cons {φs φsᵤₙ : List 𝓕} {φ : 𝓕}
|
||||
(c : ContractionsAux φs φsᵤₙ) (n : Option (Fin (φsᵤₙ.length))) :
|
||||
(toInvolution ⟨optionEraseZ φsᵤₙ φ n, ContractionsAux.cons n c⟩).1
|
||||
= (involutionCons φs.length).symm ⟨(toInvolution ⟨φsᵤₙ, c⟩).1,
|
||||
(involutionAddEquiv (toInvolution ⟨φsᵤₙ, c⟩).1).symm
|
||||
(Option.map (finCongr (toInvolution_length)) n)⟩ := by
|
||||
dsimp [toInvolution]
|
||||
congr 3
|
||||
rw [Option.map_map]
|
||||
simp [finCongr]
|
||||
rfl
|
||||
|
||||
lemma toInvolution_consEquiv {φs : List 𝓕} {φ : 𝓕}
|
||||
(c : Contractions φs) (n : Option (Fin (c.uncontracted.length))) :
|
||||
(toInvolution ((consEquiv (φ := φ)).symm ⟨c, n⟩)).1 =
|
||||
(involutionCons φs.length).symm ⟨(toInvolution c).1,
|
||||
(involutionAddEquiv (toInvolution c).1).symm
|
||||
(Option.map (finCongr (toInvolution_length)) n)⟩ := by
|
||||
erw [toInvolution_cons]
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Involution equiv.
|
||||
|
||||
-/
|
||||
|
||||
lemma toInvolution_fromInvolution : {φs : List 𝓕} → (c : Contractions φs) →
|
||||
fromInvolution (toInvolution c) = c
|
||||
| [], ⟨[], ContractionsAux.nil⟩ => rfl
|
||||
| φ :: φs, ⟨_, .cons (φsᵤₙ := φsᵤₙ) n c⟩ => by
|
||||
rw [toInvolution_cons]
|
||||
rw [fromInvolution_of_involutionCons]
|
||||
rw [Equiv.symm_apply_eq]
|
||||
dsimp [consEquiv]
|
||||
refine consEquiv_ext ?_ ?_
|
||||
· exact toInvolution_fromInvolution ⟨φsᵤₙ, c⟩
|
||||
· simp [finCongr]
|
||||
ext a : 1
|
||||
simp only [Option.mem_def, Option.map_eq_some', Function.comp_apply, Fin.cast_trans,
|
||||
Fin.cast_eq_self, exists_eq_right]
|
||||
|
||||
lemma fromInvolution_toInvolution : {φs : List 𝓕} → (f : {f : Fin (φs ).length → Fin (φs).length // Function.Involutive f})
|
||||
→ toInvolution (fromInvolution f) = f
|
||||
| [], _ => by
|
||||
ext x
|
||||
exact Fin.elim0 x
|
||||
| φ :: φs, f => by
|
||||
rw [fromInvolution_cons]
|
||||
rw [toInvolution_consEquiv]
|
||||
erw [Equiv.symm_apply_eq]
|
||||
have hx := fromInvolution_toInvolution ((involutionCons φs.length) f).fst
|
||||
apply involutionCons_ext ?_ ?_
|
||||
· simp only [Nat.succ_eq_add_one, List.length_cons]
|
||||
exact hx
|
||||
· simp only [Nat.succ_eq_add_one, Option.map_map, List.length_cons]
|
||||
rw [Equiv.symm_apply_eq]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [involutionAddEquiv_cast hx]
|
||||
simp [Nat.succ_eq_add_one,- eq_mpr_eq_cast, Equiv.trans_apply, -Equiv.optionCongr_apply]
|
||||
rfl
|
||||
|
||||
def equivInvolutions {φs : List 𝓕} :
|
||||
Contractions φs ≃ {f : Fin φs.length → Fin φs.length // Function.Involutive f} where
|
||||
toFun := fun c => toInvolution c
|
||||
invFun := fromInvolution
|
||||
left_inv := toInvolution_fromInvolution
|
||||
right_inv := fromInvolution_toInvolution
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Full contractions and involutions.
|
||||
-/
|
||||
lemma isFull_iff_uncontractedFromInvolution_empty {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ (uncontractedFromInvolution (equivInvolutions c)).1 = [] := by
|
||||
let l := toInvolution c
|
||||
erw [l.2]
|
||||
rfl
|
||||
|
||||
lemma isFull_iff_filter_card_involution_zero {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ (Finset.univ.filter fun i => (equivInvolutions c).1 i = i).card = 0 := by
|
||||
rw [isFull_iff_uncontractedFromInvolution_empty, List.ext_get_iff]
|
||||
simp
|
||||
|
||||
lemma isFull_iff_involution_no_fixed_points {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ ∀ (i : Fin φs.length), (equivInvolutions c).1 i ≠ i := by
|
||||
rw [isFull_iff_filter_card_involution_zero]
|
||||
simp
|
||||
rw [Finset.filter_eq_empty_iff]
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
intro i
|
||||
refine h (Finset.mem_univ i)
|
||||
· intro i h
|
||||
exact fun a => i h
|
||||
|
||||
|
||||
open Nat in
|
||||
def isFullInvolutionEquiv {φs : List 𝓕} :
|
||||
{c : Contractions φs // IsFull c} ≃ {f : Fin φs.length → Fin φs.length // Function.Involutive f ∧ (∀ i, f i ≠ i)} where
|
||||
toFun c := ⟨equivInvolutions c.1, by
|
||||
apply And.intro (equivInvolutions c.1).2
|
||||
rw [← isFull_iff_involution_no_fixed_points]
|
||||
exact c.2
|
||||
⟩
|
||||
invFun f := ⟨equivInvolutions.symm ⟨f.1, f.2.1⟩, by
|
||||
rw [isFull_iff_involution_no_fixed_points]
|
||||
simpa using f.2.2⟩
|
||||
left_inv c := by simp
|
||||
right_inv f := by simp
|
||||
|
||||
informal_definition equivFullInvolution where
|
||||
math :≈ "There is an isomorphism from the type of full contractions of a list `l`
|
||||
and the type of fixed-point free involutions from `Fin l.length` to `Fin l.length."
|
||||
|
||||
end Contractions
|
||||
|
||||
|
|
|
@ -25,11 +25,11 @@ lemma static_wick_nil {A : Type} [Semiring A] [Algebra ℂ A]
|
|||
(S : Contractions.Splitting f le) :
|
||||
F (ofListLift f [] 1) = ∑ c : Contractions [],
|
||||
c.toCenterTerm f q le F S *
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.uncontracted 1)) := by
|
||||
rw [← Contractions.nilEquiv.symm.sum_comp]
|
||||
simp only [Finset.univ_unique, PUnit.default_eq_unit, Contractions.nilEquiv, Equiv.coe_fn_symm_mk,
|
||||
Finset.sum_const, Finset.card_singleton, one_smul]
|
||||
dsimp [Contractions.normalize, Contractions.toCenterTerm]
|
||||
dsimp [Contractions.uncontracted, Contractions.toCenterTerm]
|
||||
simp [ofListLift_empty]
|
||||
|
||||
lemma static_wick_cons [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕) × f i) le]
|
||||
|
@ -38,10 +38,10 @@ lemma static_wick_cons [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕) ×
|
|||
(S : Contractions.Splitting f le)
|
||||
(ih : F (ofListLift f φs 1) =
|
||||
∑ c : Contractions φs, c.toCenterTerm f q le F S * F (koszulOrder (fun i => q i.fst) le
|
||||
(ofListLift f c.normalize 1))) :
|
||||
(ofListLift f c.uncontracted 1))) :
|
||||
F (ofListLift f (φ :: φs) 1) = ∑ c : Contractions (φ :: φs),
|
||||
c.toCenterTerm f q le F S *
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.uncontracted 1)) := by
|
||||
rw [ofListLift_cons_eq_ofListLift, map_mul, ih, Finset.mul_sum,
|
||||
← Contractions.consEquiv.symm.sum_comp]
|
||||
erw [Finset.sum_sigma]
|
||||
|
@ -88,7 +88,7 @@ theorem static_wick_theorem [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕
|
|||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le F]
|
||||
(S : Contractions.Splitting f le) :
|
||||
F (ofListLift f φs 1) = ∑ c : Contractions φs, c.toCenterTerm f q le F S *
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.uncontracted 1)) := by
|
||||
induction φs with
|
||||
| nil => exact static_wick_nil q le F S
|
||||
| cons a r ih => exact static_wick_cons q le r a F S ih
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue