feat: Cardinality of involutions and refactor
This commit is contained in:
parent
840d16a581
commit
1ab0c6f769
6 changed files with 1028 additions and 1197 deletions
File diff suppressed because it is too large
Load diff
40
HepLean/PerturbationTheory/Contractions/Card.lean
Normal file
40
HepLean/PerturbationTheory/Contractions/Card.lean
Normal file
|
@ -0,0 +1,40 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Contractions.Involutions
|
||||
/-!
|
||||
|
||||
# Cardinality of full contractions
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
namespace Contractions
|
||||
|
||||
open HepLean.Fin
|
||||
open Nat
|
||||
|
||||
/-- There are `(φs.length - 1)‼` full contractions of a list `φs` with an even number of fields. -/
|
||||
lemma card_of_full_contractions_even {φs : List 𝓕} (he : Even φs.length ) :
|
||||
Fintype.card {c : Contractions φs // IsFull c} = (φs.length - 1)‼ := by
|
||||
rw [Fintype.card_congr (isFullInvolutionEquiv (φs := φs))]
|
||||
exact involutionNoFixed_card_even φs.length he
|
||||
|
||||
/-- There are no full contractions of a list with an odd number of fields. -/
|
||||
lemma card_of_full_contractions_odd {φs : List 𝓕} (ho : Odd φs.length ) :
|
||||
Fintype.card {c : Contractions φs // IsFull c} = 0 := by
|
||||
rw [Fintype.card_eq_zero_iff, isEmpty_subtype]
|
||||
intro c
|
||||
simp only [IsFull]
|
||||
by_contra hn
|
||||
have hc := uncontracted_length_even_iff c
|
||||
rw [hn] at hc
|
||||
simp at hc
|
||||
rw [← Nat.not_odd_iff_even] at hc
|
||||
exact hc ho
|
||||
|
||||
end Contractions
|
||||
|
||||
end Wick
|
|
@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Contractions.Basic
|
||||
import HepLean.Meta.Informal.Basic
|
||||
/-!
|
||||
|
||||
# Involutions
|
||||
|
@ -23,6 +22,7 @@ is given by the OEIS sequence A000085.
|
|||
namespace Wick
|
||||
|
||||
open HepLean.List
|
||||
open HepLean.Fin
|
||||
open FieldStatistic
|
||||
|
||||
variable {𝓕 : Type}
|
||||
|
@ -30,13 +30,366 @@ namespace Contractions
|
|||
|
||||
variable {l : List 𝓕}
|
||||
|
||||
informal_definition equivInvolution where
|
||||
math :≈ "There is an isomorphism between the type of contractions of a list `l` and
|
||||
the type of involutions from `Fin l.length` to `Fin l.length."
|
||||
/-!
|
||||
|
||||
## From Involution.
|
||||
|
||||
-/
|
||||
|
||||
def uncontractedFromInvolution : {φs : List 𝓕} →
|
||||
(f : {f : Fin φs.length → Fin φs.length // Function.Involutive f}) →
|
||||
{l : List 𝓕 // l.length = (Finset.univ.filter fun i => f.1 i = i).card}
|
||||
| [], _ => ⟨[], by simp⟩
|
||||
| φ :: φs, f =>
|
||||
let luc := uncontractedFromInvolution (involutionCons φs.length f).fst
|
||||
let n' := involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2
|
||||
if hn : n' = none then
|
||||
have hn' := involutionAddEquiv_none_image_zero (n := φs.length) (f := f) hn
|
||||
⟨optionEraseZ luc φ none, by
|
||||
simp [optionEraseZ]
|
||||
rw [← luc.2]
|
||||
conv_rhs => rw [Finset.card_filter]
|
||||
rw [Fin.sum_univ_succ]
|
||||
conv_rhs => erw [if_pos hn']
|
||||
ring_nf
|
||||
simp only [Nat.succ_eq_add_one, Mathlib.Vector.length_val, Nat.cast_id,
|
||||
add_right_inj]
|
||||
rw [Finset.card_filter]
|
||||
apply congrArg
|
||||
funext i
|
||||
refine ite_congr ?h.h.h₁ (congrFun rfl) (congrFun rfl)
|
||||
rw [involutionAddEquiv_none_succ hn]⟩
|
||||
else
|
||||
let n := n'.get (Option.isSome_iff_ne_none.mpr hn)
|
||||
let np : Fin luc.1.length := ⟨n.1, by
|
||||
rw [luc.2]
|
||||
exact n.prop⟩
|
||||
⟨optionEraseZ luc φ (some np), by
|
||||
let k' := (involutionCons φs.length f).2
|
||||
have hkIsSome : (k'.1).isSome := by
|
||||
simp [n', involutionAddEquiv ] at hn
|
||||
split at hn
|
||||
· simp_all only [reduceCtorEq, not_false_eq_true, Nat.succ_eq_add_one, Option.isSome_some, k']
|
||||
· simp_all only [not_true_eq_false]
|
||||
let k := k'.1.get hkIsSome
|
||||
rw [optionEraseZ_some_length]
|
||||
have hksucc : k.succ = f.1 ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
simp [k, k', involutionCons]
|
||||
have hzero : ⟨0, Nat.zero_lt_succ φs.length⟩ = f.1 k.succ := by
|
||||
rw [hksucc]
|
||||
rw [f.2]
|
||||
have hkcons : ((involutionCons φs.length) f).1.1 k = k := by
|
||||
exact k'.2 hkIsSome
|
||||
have hksuccNe : f.1 k.succ ≠ k.succ := by
|
||||
conv_rhs => rw [hksucc]
|
||||
exact fun hn => Fin.succ_ne_zero k (Function.Involutive.injective f.2 hn )
|
||||
have hluc : 1 ≤ luc.1.length := by
|
||||
simp
|
||||
use k
|
||||
simp [involutionCons]
|
||||
rw [hksucc, f.2]
|
||||
simp
|
||||
rw [propext (Nat.sub_eq_iff_eq_add' hluc)]
|
||||
have h0 : ¬ f.1 ⟨0, Nat.zero_lt_succ φs.length⟩ = ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
exact Option.isSome_dite'.mp hkIsSome
|
||||
conv_rhs =>
|
||||
rw [Finset.card_filter]
|
||||
erw [Fin.sum_univ_succ]
|
||||
erw [if_neg h0]
|
||||
simp only [Nat.succ_eq_add_one, Mathlib.Vector.length_val, List.length_cons,
|
||||
Nat.cast_id, zero_add]
|
||||
conv_rhs => lhs; rw [Eq.symm (Fintype.sum_ite_eq' k fun j => 1)]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
rw [Finset.card_filter]
|
||||
apply congrArg
|
||||
funext i
|
||||
by_cases hik : i = k
|
||||
· subst hik
|
||||
simp [hkcons, hksuccNe]
|
||||
· simp [hik]
|
||||
refine ite_congr ?_ (congrFun rfl) (congrFun rfl)
|
||||
simp [involutionCons]
|
||||
have hfi : f.1 i.succ ≠ ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
rw [hzero]
|
||||
by_contra hn
|
||||
have hik' := (Function.Involutive.injective f.2 hn)
|
||||
simp only [List.length_cons, Fin.succ_inj] at hik'
|
||||
exact hik hik'
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
have h' := h hfi
|
||||
conv_rhs => rw [← h']
|
||||
simp
|
||||
· intro h hfi
|
||||
simp [Fin.ext_iff]
|
||||
rw [h]
|
||||
simp⟩
|
||||
|
||||
lemma uncontractedFromInvolution_cons {φs : List 𝓕} {φ : 𝓕}
|
||||
(f : {f : Fin (φ :: φs).length → Fin (φ :: φs).length // Function.Involutive f}) :
|
||||
uncontractedFromInvolution f =
|
||||
optionEraseZ (uncontractedFromInvolution (involutionCons φs.length f).fst) φ
|
||||
(Option.map (finCongr ((uncontractedFromInvolution (involutionCons φs.length f).fst).2.symm))
|
||||
(involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2)) := by
|
||||
let luc := uncontractedFromInvolution (involutionCons φs.length f).fst
|
||||
let n' := involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2
|
||||
change _ = optionEraseZ luc φ
|
||||
(Option.map (finCongr ((uncontractedFromInvolution (involutionCons φs.length f).fst).2.symm)) n')
|
||||
dsimp [uncontractedFromInvolution]
|
||||
by_cases hn : n' = none
|
||||
· have hn' := hn
|
||||
simp [n'] at hn'
|
||||
simp [hn']
|
||||
rw [hn]
|
||||
rfl
|
||||
· have hn' := hn
|
||||
simp [n'] at hn'
|
||||
simp [hn']
|
||||
congr
|
||||
simp [n']
|
||||
simp_all only [Nat.succ_eq_add_one, not_false_eq_true, n', luc]
|
||||
obtain ⟨val, property⟩ := f
|
||||
obtain ⟨val_1, property_1⟩ := luc
|
||||
simp_all only [Nat.succ_eq_add_one, List.length_cons]
|
||||
ext a : 1
|
||||
simp_all only [Option.mem_def, Option.some.injEq, Option.map_eq_some', finCongr_apply]
|
||||
apply Iff.intro
|
||||
· intro a_1
|
||||
subst a_1
|
||||
apply Exists.intro
|
||||
· apply And.intro
|
||||
on_goal 2 => {rfl
|
||||
}
|
||||
· simp_all only [Option.some_get]
|
||||
· intro a_1
|
||||
obtain ⟨w, h⟩ := a_1
|
||||
obtain ⟨left, right⟩ := h
|
||||
subst right
|
||||
simp_all only [Option.get_some]
|
||||
rfl
|
||||
|
||||
def fromInvolutionAux : {l : List 𝓕} →
|
||||
(f : {f : Fin l.length → Fin l.length // Function.Involutive f}) →
|
||||
ContractionsAux l (uncontractedFromInvolution f)
|
||||
| [] => fun _ => ContractionsAux.nil
|
||||
| _ :: φs => fun f =>
|
||||
let f' := involutionCons φs.length f
|
||||
let c' := fromInvolutionAux f'.1
|
||||
let n' := Option.map (finCongr ((uncontractedFromInvolution f'.fst).2.symm))
|
||||
(involutionAddEquiv f'.1 f'.2)
|
||||
auxCongr (uncontractedFromInvolution_cons f).symm (ContractionsAux.cons n' c')
|
||||
|
||||
def fromInvolution {φs : List 𝓕} (f : {f : Fin φs.length → Fin φs.length // Function.Involutive f}) :
|
||||
Contractions φs := ⟨uncontractedFromInvolution f, fromInvolutionAux f⟩
|
||||
|
||||
lemma fromInvolution_cons {φs : List 𝓕} {φ : 𝓕}
|
||||
(f : {f : Fin (φ :: φs).length → Fin (φ :: φs).length // Function.Involutive f}) :
|
||||
let f' := involutionCons φs.length f
|
||||
fromInvolution f = consEquiv.symm
|
||||
⟨fromInvolution f'.1, Option.map (finCongr ((uncontractedFromInvolution f'.fst).2.symm))
|
||||
(involutionAddEquiv f'.1 f'.2)⟩ := by
|
||||
refine auxCongr_ext ?_ ?_
|
||||
· dsimp [fromInvolution]
|
||||
rw [uncontractedFromInvolution_cons]
|
||||
rfl
|
||||
· dsimp [fromInvolution, fromInvolutionAux]
|
||||
rfl
|
||||
|
||||
lemma fromInvolution_of_involutionCons
|
||||
{φs : List 𝓕} {φ : 𝓕}
|
||||
(f : {f : Fin (φs ).length → Fin (φs).length // Function.Involutive f})
|
||||
(n : { i : Option (Fin φs.length) // ∀ (h : i.isSome = true), f.1 (i.get h) = i.get h }):
|
||||
fromInvolution (φs := φ :: φs) ((involutionCons φs.length).symm ⟨f, n⟩) =
|
||||
consEquiv.symm
|
||||
⟨fromInvolution f, Option.map (finCongr ((uncontractedFromInvolution f).2.symm))
|
||||
(involutionAddEquiv f n)⟩ := by
|
||||
rw [fromInvolution_cons]
|
||||
congr 1
|
||||
simp
|
||||
rw [Equiv.apply_symm_apply]
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## To Involution.
|
||||
|
||||
-/
|
||||
|
||||
def toInvolution : {φs : List 𝓕} → (c : Contractions φs) →
|
||||
{f : {f : Fin φs.length → Fin φs.length // Function.Involutive f} //
|
||||
uncontractedFromInvolution f = c.1}
|
||||
| [], ⟨[], ContractionsAux.nil⟩ => ⟨⟨fun i => i, by
|
||||
intro i
|
||||
simp⟩, by rfl⟩
|
||||
| φ :: φs, ⟨_, .cons (φsᵤₙ := aux) n c⟩ => by
|
||||
let ⟨⟨f', hf1⟩, hf2⟩ := toInvolution ⟨aux, c⟩
|
||||
let n' : Option (Fin (uncontractedFromInvolution ⟨f', hf1⟩).1.length) :=
|
||||
Option.map (finCongr (by rw [hf2])) n
|
||||
let F := (involutionCons φs.length).symm ⟨⟨f', hf1⟩,
|
||||
(involutionAddEquiv ⟨f', hf1⟩).symm
|
||||
(Option.map (finCongr ((uncontractedFromInvolution ⟨f', hf1⟩).2)) n')⟩
|
||||
refine ⟨F, ?_⟩
|
||||
have hF0 : ((involutionCons φs.length) F) = ⟨⟨f', hf1⟩,
|
||||
(involutionAddEquiv ⟨f', hf1⟩).symm
|
||||
(Option.map (finCongr ((uncontractedFromInvolution ⟨f', hf1⟩).2)) n')⟩ := by
|
||||
simp [F]
|
||||
have hF1 : ((involutionCons φs.length) F).fst = ⟨f', hf1⟩ := by
|
||||
rw [hF0]
|
||||
have hF2L : ((uncontractedFromInvolution ⟨f', hf1⟩)).1.length =
|
||||
(Finset.filter (fun i => ((involutionCons φs.length) F).1.1 i = i) Finset.univ).card := by
|
||||
apply Eq.trans ((uncontractedFromInvolution ⟨f', hf1⟩)).2
|
||||
congr
|
||||
rw [hF1]
|
||||
have hF2 : ((involutionCons φs.length) F).snd = (involutionAddEquiv ((involutionCons φs.length) F).fst).symm
|
||||
(Option.map (finCongr hF2L) n') := by
|
||||
rw [@Sigma.subtype_ext_iff] at hF0
|
||||
ext1
|
||||
rw [hF0.2]
|
||||
simp
|
||||
congr 1
|
||||
· rw [hF1]
|
||||
· refine involutionAddEquiv_cast' ?_ n' _ _
|
||||
rw [hF1]
|
||||
rw [uncontractedFromInvolution_cons]
|
||||
have hx := (toInvolution ⟨aux, c⟩).2
|
||||
simp at hx
|
||||
simp
|
||||
refine optionEraseZ_ext ?_ ?_ ?_
|
||||
· dsimp [F]
|
||||
rw [Equiv.apply_symm_apply]
|
||||
simp
|
||||
rw [← hx]
|
||||
simp_all only
|
||||
· rfl
|
||||
· simp [hF2]
|
||||
dsimp [n']
|
||||
simp [finCongr]
|
||||
simp only [Nat.succ_eq_add_one, id_eq, eq_mpr_eq_cast, F, n']
|
||||
ext a : 1
|
||||
simp only [Option.mem_def, Option.map_eq_some', Function.comp_apply, Fin.cast_trans,
|
||||
Fin.cast_eq_self, exists_eq_right]
|
||||
|
||||
lemma toInvolution_length {φs φsᵤₙ : List 𝓕} {c : ContractionsAux φs φsᵤₙ} :
|
||||
φsᵤₙ.length = (Finset.filter (fun i => (toInvolution ⟨φsᵤₙ, c⟩).1.1 i = i) Finset.univ).card
|
||||
:= by
|
||||
have h2 := (toInvolution ⟨φsᵤₙ, c⟩).2
|
||||
simp at h2
|
||||
conv_lhs => rw [← h2]
|
||||
exact Mathlib.Vector.length_val (uncontractedFromInvolution (toInvolution ⟨φsᵤₙ, c⟩).1)
|
||||
|
||||
lemma toInvolution_cons {φs φsᵤₙ : List 𝓕} {φ : 𝓕}
|
||||
(c : ContractionsAux φs φsᵤₙ) (n : Option (Fin (φsᵤₙ.length))) :
|
||||
(toInvolution ⟨optionEraseZ φsᵤₙ φ n, ContractionsAux.cons n c⟩).1
|
||||
= (involutionCons φs.length).symm ⟨(toInvolution ⟨φsᵤₙ, c⟩).1,
|
||||
(involutionAddEquiv (toInvolution ⟨φsᵤₙ, c⟩).1).symm
|
||||
(Option.map (finCongr (toInvolution_length)) n)⟩ := by
|
||||
dsimp [toInvolution]
|
||||
congr 3
|
||||
rw [Option.map_map]
|
||||
simp [finCongr]
|
||||
rfl
|
||||
|
||||
lemma toInvolution_consEquiv {φs : List 𝓕} {φ : 𝓕}
|
||||
(c : Contractions φs) (n : Option (Fin (c.uncontracted.length))) :
|
||||
(toInvolution ((consEquiv (φ := φ)).symm ⟨c, n⟩)).1 =
|
||||
(involutionCons φs.length).symm ⟨(toInvolution c).1,
|
||||
(involutionAddEquiv (toInvolution c).1).symm
|
||||
(Option.map (finCongr (toInvolution_length)) n)⟩ := by
|
||||
erw [toInvolution_cons]
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Involution equiv.
|
||||
|
||||
-/
|
||||
|
||||
lemma toInvolution_fromInvolution : {φs : List 𝓕} → (c : Contractions φs) →
|
||||
fromInvolution (toInvolution c) = c
|
||||
| [], ⟨[], ContractionsAux.nil⟩ => rfl
|
||||
| φ :: φs, ⟨_, .cons (φsᵤₙ := φsᵤₙ) n c⟩ => by
|
||||
rw [toInvolution_cons]
|
||||
rw [fromInvolution_of_involutionCons]
|
||||
rw [Equiv.symm_apply_eq]
|
||||
dsimp [consEquiv]
|
||||
refine consEquiv_ext ?_ ?_
|
||||
· exact toInvolution_fromInvolution ⟨φsᵤₙ, c⟩
|
||||
· simp [finCongr]
|
||||
ext a : 1
|
||||
simp only [Option.mem_def, Option.map_eq_some', Function.comp_apply, Fin.cast_trans,
|
||||
Fin.cast_eq_self, exists_eq_right]
|
||||
|
||||
lemma fromInvolution_toInvolution : {φs : List 𝓕} → (f : {f : Fin (φs ).length → Fin (φs).length // Function.Involutive f})
|
||||
→ toInvolution (fromInvolution f) = f
|
||||
| [], _ => by
|
||||
ext x
|
||||
exact Fin.elim0 x
|
||||
| φ :: φs, f => by
|
||||
rw [fromInvolution_cons]
|
||||
rw [toInvolution_consEquiv]
|
||||
erw [Equiv.symm_apply_eq]
|
||||
have hx := fromInvolution_toInvolution ((involutionCons φs.length) f).fst
|
||||
apply involutionCons_ext ?_ ?_
|
||||
· simp only [Nat.succ_eq_add_one, List.length_cons]
|
||||
exact hx
|
||||
· simp only [Nat.succ_eq_add_one, Option.map_map, List.length_cons]
|
||||
rw [Equiv.symm_apply_eq]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [involutionAddEquiv_cast hx]
|
||||
simp [Nat.succ_eq_add_one,- eq_mpr_eq_cast, Equiv.trans_apply, -Equiv.optionCongr_apply]
|
||||
rfl
|
||||
|
||||
def equivInvolutions {φs : List 𝓕} :
|
||||
Contractions φs ≃ {f : Fin φs.length → Fin φs.length // Function.Involutive f} where
|
||||
toFun := fun c => toInvolution c
|
||||
invFun := fromInvolution
|
||||
left_inv := toInvolution_fromInvolution
|
||||
right_inv := fromInvolution_toInvolution
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Full contractions and involutions.
|
||||
-/
|
||||
lemma isFull_iff_uncontractedFromInvolution_empty {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ (uncontractedFromInvolution (equivInvolutions c)).1 = [] := by
|
||||
let l := toInvolution c
|
||||
erw [l.2]
|
||||
rfl
|
||||
|
||||
lemma isFull_iff_filter_card_involution_zero {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ (Finset.univ.filter fun i => (equivInvolutions c).1 i = i).card = 0 := by
|
||||
rw [isFull_iff_uncontractedFromInvolution_empty, List.ext_get_iff]
|
||||
simp
|
||||
|
||||
lemma isFull_iff_involution_no_fixed_points {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ ∀ (i : Fin φs.length), (equivInvolutions c).1 i ≠ i := by
|
||||
rw [isFull_iff_filter_card_involution_zero]
|
||||
simp
|
||||
rw [Finset.filter_eq_empty_iff]
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
intro i
|
||||
refine h (Finset.mem_univ i)
|
||||
· intro i h
|
||||
exact fun a => i h
|
||||
|
||||
|
||||
open Nat in
|
||||
def isFullInvolutionEquiv {φs : List 𝓕} :
|
||||
{c : Contractions φs // IsFull c} ≃ {f : Fin φs.length → Fin φs.length // Function.Involutive f ∧ (∀ i, f i ≠ i)} where
|
||||
toFun c := ⟨equivInvolutions c.1, by
|
||||
apply And.intro (equivInvolutions c.1).2
|
||||
rw [← isFull_iff_involution_no_fixed_points]
|
||||
exact c.2
|
||||
⟩
|
||||
invFun f := ⟨equivInvolutions.symm ⟨f.1, f.2.1⟩, by
|
||||
rw [isFull_iff_involution_no_fixed_points]
|
||||
simpa using f.2.2⟩
|
||||
left_inv c := by simp
|
||||
right_inv f := by simp
|
||||
|
||||
informal_definition equivFullInvolution where
|
||||
math :≈ "There is an isomorphism from the type of full contractions of a list `l`
|
||||
and the type of fixed-point free involutions from `Fin l.length` to `Fin l.length."
|
||||
|
||||
end Contractions
|
||||
|
||||
|
|
|
@ -25,11 +25,11 @@ lemma static_wick_nil {A : Type} [Semiring A] [Algebra ℂ A]
|
|||
(S : Contractions.Splitting f le) :
|
||||
F (ofListLift f [] 1) = ∑ c : Contractions [],
|
||||
c.toCenterTerm f q le F S *
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.uncontracted 1)) := by
|
||||
rw [← Contractions.nilEquiv.symm.sum_comp]
|
||||
simp only [Finset.univ_unique, PUnit.default_eq_unit, Contractions.nilEquiv, Equiv.coe_fn_symm_mk,
|
||||
Finset.sum_const, Finset.card_singleton, one_smul]
|
||||
dsimp [Contractions.normalize, Contractions.toCenterTerm]
|
||||
dsimp [Contractions.uncontracted, Contractions.toCenterTerm]
|
||||
simp [ofListLift_empty]
|
||||
|
||||
lemma static_wick_cons [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕) × f i) le]
|
||||
|
@ -38,10 +38,10 @@ lemma static_wick_cons [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕) ×
|
|||
(S : Contractions.Splitting f le)
|
||||
(ih : F (ofListLift f φs 1) =
|
||||
∑ c : Contractions φs, c.toCenterTerm f q le F S * F (koszulOrder (fun i => q i.fst) le
|
||||
(ofListLift f c.normalize 1))) :
|
||||
(ofListLift f c.uncontracted 1))) :
|
||||
F (ofListLift f (φ :: φs) 1) = ∑ c : Contractions (φ :: φs),
|
||||
c.toCenterTerm f q le F S *
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.uncontracted 1)) := by
|
||||
rw [ofListLift_cons_eq_ofListLift, map_mul, ih, Finset.mul_sum,
|
||||
← Contractions.consEquiv.symm.sum_comp]
|
||||
erw [Finset.sum_sigma]
|
||||
|
@ -88,7 +88,7 @@ theorem static_wick_theorem [IsTrans ((i : 𝓕) × f i) le] [IsTotal ((i : 𝓕
|
|||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le F]
|
||||
(S : Contractions.Splitting f le) :
|
||||
F (ofListLift f φs 1) = ∑ c : Contractions φs, c.toCenterTerm f q le F S *
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.normalize 1)) := by
|
||||
F (koszulOrder (fun i => q i.fst) le (ofListLift f c.uncontracted 1)) := by
|
||||
induction φs with
|
||||
| nil => exact static_wick_nil q le F S
|
||||
| cons a r ih => exact static_wick_cons q le r a F S ih
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue