refactor: Lint

This commit is contained in:
jstoobysmith 2025-01-22 08:57:46 +00:00
parent c86974a617
commit 1b2cc5338f
7 changed files with 2 additions and 19 deletions

View file

@ -175,7 +175,7 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
rfl
lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
@ -258,7 +258,6 @@ Using the results from above.
-/
lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *

View file

@ -209,7 +209,6 @@ lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
⟨crPart (StateAlgebra.ofState φ), ofStateList φs⟩ₛca =
crPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
@ -294,7 +293,6 @@ lemma ofStateList_mul_ofState_eq_superCommute (φs : List 𝓕.States) (φ :
rw [superCommute_ofStateList_ofState]
simp
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
@ -406,7 +404,6 @@ lemma superCommute_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp [mul_comm]
lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
(φs' : List 𝓕.CrAnStates) →
⟨ofCrAnList φs, ofCrAnList φs'⟩ₛca =

View file

@ -8,7 +8,6 @@ import HepLean.PerturbationTheory.FieldSpecification.Basic
# Specific examples of field specifications
-/
namespace FieldSpecification

View file

@ -10,8 +10,6 @@ import HepLean.PerturbationTheory.FieldSpecification.Filters
# Normal Ordering of states
-/
namespace FieldSpecification

View file

@ -903,7 +903,7 @@ lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.States) (φs : List 𝓕.S
lemma signInsertSomeCoef_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
(c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted)
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) : c.signInsertSomeCoef φ φs i j =
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) : c.signInsertSomeCoef φ φs i j =
if i < i.succAbove j then
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get,
(Finset.univ.filter (fun x => i < i.succAbove x ∧ x < j ∧ ((c.getDual? x = none)

View file

@ -18,12 +18,6 @@ namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
/-!
## Time contract.
-/
/-- Given a Wick contraction `c` associated with a list `φs`, the
product of all time-contractions of pairs of contracted elements in `φs`,
as a member of the center of `𝓞.A`. -/

View file

@ -219,7 +219,6 @@ lemma uncontractedList_length_eq_card (c : WickContraction n) :
rw [uncontractedList_eq_sort]
exact Finset.length_sort fun x1 x2 => x1 ≤ x2
lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [DecidablePred p] :
(c.uncontractedList.filter p) = (c.uncontracted.filter p).sort (· ≤ ·) := by
have h1 : (c.uncontractedList.filter p).Sorted (· ≤ ·) := by
@ -237,14 +236,12 @@ lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [Deci
have hx := (List.toFinset_sort (· ≤ ·) h2).mpr h1
rw [← hx, h3]
/-!
## uncontractedIndexEquiv
-/
/-- The equivalence between the positions of `c.uncontractedList` i.e. elements of
`Fin (c.uncontractedList).length` and the finite set `c.uncontracted` considered as a finite type.
-/
@ -315,7 +312,6 @@ lemma uncontractedStatesEquiv_list_sum [AddCommMonoid α] (φs : List 𝓕.State
-/
lemma uncontractedList_succAboveEmb_sorted (c : WickContraction n) (i : Fin n.succ) :
((List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
apply fin_list_sorted_succAboveEmb_sorted