refactor: Lint
This commit is contained in:
parent
c86974a617
commit
1b2cc5338f
7 changed files with 2 additions and 19 deletions
|
@ -175,7 +175,7 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
|
|||
rfl
|
||||
|
||||
lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
|
||||
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
|
@ -258,7 +258,6 @@ Using the results from above.
|
|||
|
||||
-/
|
||||
|
||||
|
||||
lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *
|
||||
|
|
|
@ -209,7 +209,6 @@ lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
|
|||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
|
||||
lemma superCommute_crPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), ofStateList φs⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
|
||||
|
@ -294,7 +293,6 @@ lemma ofStateList_mul_ofState_eq_superCommute (φs : List 𝓕.States) (φ :
|
|||
rw [superCommute_ofStateList_ofState]
|
||||
simp
|
||||
|
||||
|
||||
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
|
||||
|
@ -406,7 +404,6 @@ lemma superCommute_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List
|
|||
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
simp [mul_comm]
|
||||
|
||||
|
||||
lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
|
||||
(φs' : List 𝓕.CrAnStates) →
|
||||
⟨ofCrAnList φs, ofCrAnList φs'⟩ₛca =
|
||||
|
|
|
@ -8,7 +8,6 @@ import HepLean.PerturbationTheory.FieldSpecification.Basic
|
|||
|
||||
# Specific examples of field specifications
|
||||
|
||||
|
||||
-/
|
||||
|
||||
namespace FieldSpecification
|
||||
|
|
|
@ -10,8 +10,6 @@ import HepLean.PerturbationTheory.FieldSpecification.Filters
|
|||
|
||||
# Normal Ordering of states
|
||||
|
||||
|
||||
|
||||
-/
|
||||
|
||||
namespace FieldSpecification
|
||||
|
|
|
@ -903,7 +903,7 @@ lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.States) (φs : List 𝓕.S
|
|||
|
||||
lemma signInsertSomeCoef_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
(c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted)
|
||||
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) : c.signInsertSomeCoef φ φs i j =
|
||||
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) : c.signInsertSomeCoef φ φs i j =
|
||||
if i < i.succAbove j then
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get,
|
||||
(Finset.univ.filter (fun x => i < i.succAbove x ∧ x < j ∧ ((c.getDual? x = none) ∨
|
||||
|
|
|
@ -18,12 +18,6 @@ namespace WickContraction
|
|||
variable {n : ℕ} (c : WickContraction n)
|
||||
open HepLean.List
|
||||
|
||||
/-!
|
||||
|
||||
## Time contract.
|
||||
|
||||
-/
|
||||
|
||||
/-- Given a Wick contraction `c` associated with a list `φs`, the
|
||||
product of all time-contractions of pairs of contracted elements in `φs`,
|
||||
as a member of the center of `𝓞.A`. -/
|
||||
|
|
|
@ -219,7 +219,6 @@ lemma uncontractedList_length_eq_card (c : WickContraction n) :
|
|||
rw [uncontractedList_eq_sort]
|
||||
exact Finset.length_sort fun x1 x2 => x1 ≤ x2
|
||||
|
||||
|
||||
lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [DecidablePred p] :
|
||||
(c.uncontractedList.filter p) = (c.uncontracted.filter p).sort (· ≤ ·) := by
|
||||
have h1 : (c.uncontractedList.filter p).Sorted (· ≤ ·) := by
|
||||
|
@ -237,14 +236,12 @@ lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [Deci
|
|||
have hx := (List.toFinset_sort (· ≤ ·) h2).mpr h1
|
||||
rw [← hx, h3]
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## uncontractedIndexEquiv
|
||||
|
||||
-/
|
||||
|
||||
|
||||
/-- The equivalence between the positions of `c.uncontractedList` i.e. elements of
|
||||
`Fin (c.uncontractedList).length` and the finite set `c.uncontracted` considered as a finite type.
|
||||
-/
|
||||
|
@ -315,7 +312,6 @@ lemma uncontractedStatesEquiv_list_sum [AddCommMonoid α] (φs : List 𝓕.State
|
|||
|
||||
-/
|
||||
|
||||
|
||||
lemma uncontractedList_succAboveEmb_sorted (c : WickContraction n) (i : Fin n.succ) :
|
||||
((List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
|
||||
apply fin_list_sorted_succAboveEmb_sorted
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue