Merge pull request #20 from HEPLean/jstoobysmith/minor_refactors
Minor refactors
This commit is contained in:
commit
1b951994ae
4 changed files with 20 additions and 16 deletions
|
@ -54,7 +54,8 @@ lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
|||
simp_all
|
||||
linear_combination 3 * h2
|
||||
|
||||
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0) :
|
||||
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
accGrav S.val = 0 := by
|
||||
have hE := E_zero_iff_Q_zero.mpr.mt hQ
|
||||
let S' := linearParametersQENeqZero.bijection.symm ⟨S.1.1, And.intro hQ hE⟩
|
||||
|
@ -64,13 +65,14 @@ lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0
|
|||
change _ = S.val at hS'
|
||||
rw [← hS'] at hC
|
||||
rw [← hS']
|
||||
exact S'.grav_of_cubic hC
|
||||
exact S'.grav_of_cubic hC FLTThree
|
||||
|
||||
/-- Any solution to the ACCs without gravity satifies the gravitational ACC. -/
|
||||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} : accGrav S.val = 0 := by
|
||||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
accGrav S.val = 0 := by
|
||||
by_cases hQ : Q S.val (0 : Fin 1)= 0
|
||||
exact accGrav_Q_zero hQ
|
||||
exact accGrav_Q_neq_zero hQ
|
||||
exact accGrav_Q_neq_zero hQ FLTThree
|
||||
|
||||
|
||||
end One
|
||||
|
|
|
@ -285,9 +285,9 @@ lemma cubic (S : linearParametersQENeqZero) :
|
|||
simp_all
|
||||
rw [add_eq_zero_iff_eq_neg]
|
||||
|
||||
lemma FLTThree : FermatLastTheoremWith ℚ 3 := by sorry
|
||||
|
||||
lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0) :
|
||||
lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
S.v = 0 ∨ S.w = 0 := by
|
||||
rw [S.cubic] at h
|
||||
have h1 : (-1)^3 = (-1 : ℚ):= by rfl
|
||||
|
@ -335,9 +335,10 @@ lemma cube_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.v
|
|||
simp_all
|
||||
linear_combination h'
|
||||
|
||||
lemma cube_w_v (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0) :
|
||||
lemma cube_w_v (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
(S.v = -1 ∧ S.w = 0) ∨ (S.v = 0 ∧ S.w = -1) := by
|
||||
have h' := cubic_v_or_w_zero S h
|
||||
have h' := cubic_v_or_w_zero S h FLTThree
|
||||
cases' h' with hx hx
|
||||
simp [hx]
|
||||
exact cubic_v_zero S h hx
|
||||
|
@ -357,10 +358,11 @@ lemma grav (S : linearParametersQENeqZero) : accGrav (bijection S).1.val = 0 ↔
|
|||
rw [h]
|
||||
ring
|
||||
|
||||
lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0) :
|
||||
lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
accGrav (bijection S).1.val = 0 := by
|
||||
rw [grav]
|
||||
have h' := cube_w_v S h
|
||||
have h' := cube_w_v S h FLTThree
|
||||
cases' h' with h h
|
||||
rw [h.1, h.2]
|
||||
simp only [add_zero]
|
||||
|
|
|
@ -108,7 +108,7 @@ lemma phaseShiftRelation_trans {U V W : unitaryGroup (Fin 3) ℂ} :
|
|||
rw [add_comm k e, add_comm l f, add_comm m g]
|
||||
|
||||
|
||||
lemma phaseShiftEquivRelation : Equivalence phaseShiftRelation where
|
||||
lemma phaseShiftRelation_equiv : Equivalence phaseShiftRelation where
|
||||
refl := phaseShiftRelation_refl
|
||||
symm := phaseShiftRelation_symm
|
||||
trans := phaseShiftRelation_trans
|
||||
|
@ -149,7 +149,7 @@ scoped[CKMMatrix] notation (name := ts_element) "[" V "]ts" => V.1 2 1
|
|||
/-- The `tb`th element of the CKM matrix. -/
|
||||
scoped[CKMMatrix] notation (name := tb_element) "[" V "]tb" => V.1 2 2
|
||||
|
||||
instance CKMMatrixSetoid : Setoid CKMMatrix := ⟨phaseShiftRelation, phaseShiftEquivRelation⟩
|
||||
instance CKMMatrixSetoid : Setoid CKMMatrix := ⟨phaseShiftRelation, phaseShiftRelation_equiv⟩
|
||||
|
||||
/-- The matrix obtained from `V` by shifting the phases of the fermions. -/
|
||||
@[simps!]
|
||||
|
|
|
@ -614,7 +614,7 @@ lemma eq_standParam_of_ubOnePhaseCond {V : CKMMatrix} (hV : ubOnePhaseCond V) :
|
|||
theorem exists_δ₁₃ (V : CKMMatrix) :
|
||||
∃ (δ₃ : ℝ), V ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₃ := by
|
||||
obtain ⟨U, hU⟩ := fstRowThdColRealCond_holds_up_to_equiv V
|
||||
have hUV : ⟦U⟧ = ⟦V⟧ := (Quotient.eq.mpr (phaseShiftEquivRelation.symm hU.1))
|
||||
have hUV : ⟦U⟧ = ⟦V⟧ := (Quotient.eq.mpr (phaseShiftRelation_equiv.symm hU.1))
|
||||
by_cases ha : [V]ud ≠ 0 ∨ [V]us ≠ 0
|
||||
· have haU : [U]ud ≠ 0 ∨ [U]us ≠ 0 := by -- should be much simplier
|
||||
by_contra hn
|
||||
|
@ -638,8 +638,8 @@ theorem exists_δ₁₃ (V : CKMMatrix) :
|
|||
exact ha
|
||||
simpa [not_or, VAbs] using h1
|
||||
have ⟨U2, hU2⟩ := ubOnePhaseCond_hold_up_to_equiv_of_ub_one haU hU.2
|
||||
have hUVa2 : V ≈ U2 := phaseShiftEquivRelation.trans hU.1 hU2.1
|
||||
have hUV2 : ⟦U2⟧ = ⟦V⟧ := (Quotient.eq.mpr (phaseShiftEquivRelation.symm hUVa2))
|
||||
have hUVa2 : V ≈ U2 := phaseShiftRelation_equiv.trans hU.1 hU2.1
|
||||
have hUV2 : ⟦U2⟧ = ⟦V⟧ := (Quotient.eq.mpr (phaseShiftRelation_equiv.symm hUVa2))
|
||||
have hx := eq_standParam_of_ubOnePhaseCond hU2.2
|
||||
use 0
|
||||
rw [← hUV2, ← hx]
|
||||
|
@ -661,7 +661,7 @@ theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
|
|||
simp
|
||||
rw [h1]
|
||||
rw [mulExpδ₁₃_on_param_eq_zero_iff, Vs_zero_iff_cos_sin_zero] at h
|
||||
refine phaseShiftEquivRelation.trans hδ₃ ?_
|
||||
refine phaseShiftRelation_equiv.trans hδ₃ ?_
|
||||
rcases h with h | h | h | h | h | h
|
||||
exact on_param_cos_θ₁₂_eq_zero δ₁₃' h
|
||||
exact on_param_cos_θ₁₃_eq_zero δ₁₃' h
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue