docs: Some doc strings for instances
This commit is contained in:
parent
7948160e53
commit
1bc878a2d4
9 changed files with 40 additions and 36 deletions
|
@ -24,6 +24,7 @@ namespace HomogeneousQuadratic
|
|||
|
||||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||||
|
||||
/-- A homogenous quadratic equation can be treated as a function from `V` to `ℚ`. -/
|
||||
instance instFun : FunLike (HomogeneousQuadratic V) V ℚ where
|
||||
coe f := f.toFun
|
||||
coe_injective' f g h := by
|
||||
|
@ -49,6 +50,7 @@ open BigOperators
|
|||
|
||||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||||
|
||||
/-- A symmetric bilinear form can be treated as a function from `V` to `V →ₗ[ℚ] ℚ`. -/
|
||||
instance instFun (V : Type) [AddCommMonoid V] [Module ℚ V] :
|
||||
FunLike (BiLinearSymm V) V (V →ₗ[ℚ] ℚ) where
|
||||
coe f := f.toFun
|
||||
|
@ -146,6 +148,7 @@ namespace HomogeneousCubic
|
|||
|
||||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||||
|
||||
/-- A homogenous cubic equation can be treated as a function from `V` to `ℚ`. -/
|
||||
instance instFun : FunLike (HomogeneousCubic V) V ℚ where
|
||||
coe f := f.toFun
|
||||
coe_injective' f g h := by
|
||||
|
@ -168,6 +171,7 @@ namespace TriLinearSymm
|
|||
open BigOperators
|
||||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||||
|
||||
/-- A symmetric trilinear form can be treated as a function from `V` to `V →ₗ[ℚ] V →ₗ[ℚ] ℚ`. -/
|
||||
instance instFun : FunLike (TriLinearSymm V) V (V →ₗ[ℚ] V →ₗ[ℚ] ℚ) where
|
||||
coe f := f.toFun
|
||||
coe_injective' f g h := by
|
||||
|
|
|
@ -19,6 +19,7 @@ open Matrix
|
|||
/-- The group of `3×3` real matrices with determinant 1 and `A * Aᵀ = 1`. -/
|
||||
def SO3 : Type := {A : Matrix (Fin 3) (Fin 3) ℝ // A.det = 1 ∧ A * Aᵀ = 1}
|
||||
|
||||
/-- The instance of a group on `SO3`. -/
|
||||
@[simps! mul_coe one_coe inv div]
|
||||
instance SO3Group : Group SO3 where
|
||||
mul A B := ⟨A.1 * B.1,
|
||||
|
@ -110,6 +111,8 @@ lemma toGL_embedding : IsEmbedding toGL.toFun where
|
|||
apply And.intro (isOpen_induced hU1)
|
||||
exact hU2
|
||||
|
||||
/-- The instance of a topological group on `SO(3)`, defined through the embedding of `SO(3)`
|
||||
into `GL(n)`. -/
|
||||
instance : TopologicalGroup SO(3) :=
|
||||
IsInducing.topologicalGroup toGL toGL_embedding.toIsInducing
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue