Merge pull request #46 from pitmonticone/golf-proofs

Golf a few proofs
This commit is contained in:
Joseph Tooby-Smith 2024-06-09 11:28:26 -04:00 committed by GitHub
commit 1cb2cdfd11
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 101 additions and 190 deletions

View file

@ -85,40 +85,22 @@ lemma η_transpose : η.transpose = η := by
@[simp]
lemma det_η : η.det = - 1 := by
simp only [η_explicit, det_succ_row_zero, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
of_apply, cons_val', empty_val', cons_val_fin_one, cons_val_zero, submatrix_apply,
Fin.succ_zero_eq_one, cons_val_one, head_cons, submatrix_submatrix, Function.comp_apply,
Fin.succ_one_eq_two, cons_val_two, tail_cons, det_unique, Fin.default_eq_zero, cons_val_succ,
head_fin_const, Fin.sum_univ_succ, Fin.val_zero, pow_zero, one_mul, Fin.zero_succAbove,
Finset.univ_unique, Fin.val_succ, Fin.coe_fin_one, zero_add, pow_one, neg_mul,
Fin.succ_succAbove_zero, Finset.sum_neg_distrib, Finset.sum_singleton, Fin.succ_succAbove_one,
even_two, Even.neg_pow, one_pow, mul_one, mul_neg, neg_neg, mul_zero, neg_zero, add_zero,
zero_mul, Finset.sum_const_zero]
simp [η_explicit, det_succ_row_zero, Fin.sum_univ_succ]
@[simp]
lemma η_sq : η * η = 1 := by
funext μ ν
rw [mul_apply, Fin.sum_univ_four]
fin_cases μ <;> fin_cases ν <;>
simp [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
simp [η_explicit, vecHead, vecTail]
lemma η_diag_mul_self (μ : Fin 4) : η μ μ * η μ μ = 1 := by
fin_cases μ
<;> simp [η_explicit]
fin_cases μ <;> simp [η_explicit]
lemma η_mulVec (x : spaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by
rw [explicit x]
rw [η_explicit]
rw [explicit x, η_explicit]
funext i
rw [mulVec, dotProduct, Fin.sum_univ_four]
fin_cases i <;>
simp [Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
simp [vecHead, vecTail]
/-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/
@[simps!]
@ -128,7 +110,7 @@ def linearMapForSpaceTime (x : spaceTime) : spaceTime →ₗ[] where
simp only
rw [mulVec_add, dotProduct_add]
map_smul' c y := by
simp only
simp only [RingHom.id_apply, smul_eq_mul]
rw [mulVec_smul, dotProduct_smul]
rfl
@ -168,7 +150,7 @@ lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖
lemma ηLin_leq_time_sq (x : spaceTime) : ηLin x x ≤ x 0 ^ 2 := by
rw [time_elm_sq_of_ηLin]
apply (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
exact (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
lemma ηLin_space_inner_product (x y : spaceTime) :
ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ := by
@ -202,18 +184,18 @@ lemma ηLin_stdBasis_apply (μ : Fin 4) (x : spaceTime) : ηLin (stdBasis μ) x
lemma ηLin_η_stdBasis (μ ν : Fin 4) : ηLin (stdBasis μ) (stdBasis ν) = η μ ν := by
rw [ηLin_stdBasis_apply]
by_cases h : μ = ν
rw [stdBasis_apply]
subst h
simp only [↓reduceIte, mul_one]
rw [stdBasis_not_eq, η_off_diagonal h]
simp only [mul_zero]
exact fun a => h (id a.symm)
· rw [stdBasis_apply]
subst h
simp
· rw [stdBasis_not_eq, η_off_diagonal h]
simp only [mul_zero]
exact fun a ↦ h (id a.symm)
lemma ηLin_mulVec_left (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ) :
ηLin (Λ *ᵥ x) y = ηLin x ((η * Λᵀ * η) *ᵥ y) := by
simp only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, mulVec_mulVec]
rw [(vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec]
rw [← mul_assoc, ← mul_assoc, η_sq, one_mul]
simp [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply,
mulVec_mulVec, (vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec,
← mul_assoc, ← mul_assoc, η_sq, one_mul]
lemma ηLin_mulVec_right (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ) :
ηLin x (Λ *ᵥ y) = ηLin ((η * Λᵀ * η) *ᵥ x) y := by
@ -231,14 +213,14 @@ lemma ηLin_matrix_stdBasis' (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ) :
lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ) :
Λ = 1 ↔ ∀ (x y : spaceTime), ηLin x y = ηLin x (Λ *ᵥ y) := by
apply Iff.intro
intro h
subst h
simp only [ηLin, one_mulVec, implies_true]
intro h
funext μ ν
have h1 := h (stdBasis μ) (stdBasis ν)
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
fin_cases μ <;> fin_cases ν <;>
· intro h
subst h
simp only [ηLin, one_mulVec, implies_true]
· intro h
funext μ ν
have h1 := h (stdBasis μ) (stdBasis ν)
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
fin_cases μ <;> fin_cases ν <;>
simp_all [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one,
Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
@ -248,9 +230,6 @@ lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ) :
/-- The metric as a quadratic form on `spaceTime`. -/
def quadraticForm : QuadraticForm spaceTime := ηLin.toQuadraticForm
end spaceTime
end

View file

@ -51,7 +51,7 @@ instance : NormedAddCommGroup (Fin 2 → ) := by
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
section. -/
noncomputable def higgsVec.toField (φ : higgsVec) : higgsField where
toFun := fun _ => φ
toFun := fun _ φ
contMDiff_toFun := by
intro x
rw [Bundle.contMDiffAt_section]
@ -63,7 +63,6 @@ open Complex Real
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, higgsVec) φ.toHiggsVec := by
intro x0
have h1 := φ.contMDiff x0
@ -76,29 +75,25 @@ lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(
exact h1
lemma toField_toHiggsVec_apply (φ : higgsField) (x : spaceTime) :
(φ.toHiggsVec x).toField x = φ x := by
rfl
(φ.toHiggsVec x).toField x = φ x := rfl
lemma higgsVecToFin2_toHiggsVec (φ : higgsField) : higgsVecToFin2 ∘ φ.toHiggsVec = φ := by
ext x
rfl
lemma higgsVecToFin2_toHiggsVec (φ : higgsField) :
higgsVecToFin2 ∘ φ.toHiggsVec = φ := rfl
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, Fin 2 → ) φ := by
rw [← φ.higgsVecToFin2_toHiggsVec]
exact Smooth.comp smooth_higgsVecToFin2 (φ.toHiggsVec_smooth)
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, Fin 2 → ) φ :=
smooth_higgsVecToFin2.comp φ.toHiggsVec_smooth
lemma apply_smooth (φ : higgsField) :
∀ i, Smooth 𝓘(, spaceTime) 𝓘(, ) (fun (x : spaceTime) => (φ x i)) := by
rw [← smooth_pi_space]
exact φ.toVec_smooth
∀ i, Smooth 𝓘(, spaceTime) 𝓘(, ) (fun (x : spaceTime) => (φ x i)) :=
(smooth_pi_space).mp (φ.toVec_smooth)
lemma apply_re_smooth (φ : higgsField) (i : Fin 2):
Smooth 𝓘(, spaceTime) 𝓘(, ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.apply_smooth i)
(ContinuousLinearMap.smooth reCLM).comp (φ.apply_smooth i)
lemma apply_im_smooth (φ : higgsField) (i : Fin 2):
Smooth 𝓘(, spaceTime) 𝓘(, ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.apply_smooth i)
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
/-- Given two `higgsField`, the map `spaceTime → ` obtained by taking their inner product. -/
def innerProd (φ1 φ2 : higgsField) : spaceTime → := fun x => ⟪φ1 x, φ2 x⟫_
@ -115,9 +110,7 @@ lemma toHiggsVec_norm (φ : higgsField) (x : spaceTime) :
lemma normSq_expand (φ : higgsField) :
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
funext x
simp only [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
rw [@norm_sq_eq_inner ]
simp
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ]
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, ) φ.normSq := by
rw [normSq_expand]
@ -140,10 +133,10 @@ lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(,
exact φ.apply_im_smooth 1
lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
simp only [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
@[simp]
@ -153,10 +146,8 @@ def potential (φ : higgsField) (μSq lambda : ) (x : spaceTime) : :=
lemma potential_smooth (φ : higgsField) (μSq lambda : ) :
Smooth 𝓘(, spaceTime) 𝓘(, ) (fun x => φ.potential μSq lambda x) := by
simp only [potential, normSq, neg_mul]
exact Smooth.add
(Smooth.neg (Smooth.smul smooth_const φ.normSq_smooth))
(Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth)
exact (smooth_const.smul φ.normSq_smooth).neg.add
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
lemma potential_apply (φ : higgsField) (μSq lambda : ) (x : spaceTime) :
(φ.potential μSq lambda) x = higgsVec.potential μSq lambda (φ.toHiggsVec x) := by
@ -171,35 +162,20 @@ lemma isConst_of_higgsVec (φ : higgsVec) : φ.toField.isConst := by
intro x _
simp [higgsVec.toField]
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField := by
apply Iff.intro
intro h
use Φ 0
ext x y
rw [← h x 0]
rfl
intro h
intro x y
obtain ⟨φ, hφ⟩ := h
subst hφ
rfl
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField :=
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
lemma normSq_of_higgsVec (φ : higgsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
simp only [normSq, higgsVec.toField]
funext x
simp
simp [normSq, higgsVec.toField]
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ) :
φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by
simp [higgsVec.potential]
unfold potential
rw [normSq_of_higgsVec]
funext x
simp only [neg_mul, add_right_inj]
ring_nf
end higgsField
end
end StandardModel

View file

@ -46,10 +46,8 @@ section higgsVec
casting vectors. -/
def higgsVecToFin2 : higgsVec →L[] (Fin 2 → ) where
toFun x := x
map_add' x y := by
simp
map_smul' a x := by
simp
map_add' x y := by simp
map_smul' a x := by simp
lemma smooth_higgsVecToFin2 : Smooth 𝓘(, higgsVec) 𝓘(, Fin 2 → ) higgsVecToFin2 :=
ContinuousLinearMap.smooth higgsVecToFin2
@ -63,11 +61,10 @@ noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) whe
map_mul' := by
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
rw [repU1.map_mul, fundamentalSU2.map_mul]
rw [mul_assoc, mul_assoc, ← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc,
← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
repeat rw [mul_assoc]
map_one' := by
simp only [Prod.snd_one, _root_.map_one, Prod.fst_one, mul_one]
map_one' := by simp
/-- An orthonormal basis of higgsVec. -/
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) higgsVec :=
@ -87,20 +84,16 @@ lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ) :
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ) :
matrixToLin g ∈ unitary (higgsVec →L[] higgsVec) := by
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul]
rw [mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
simp
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
of `higgsVec`. -/
noncomputable def unitaryToLin : unitaryGroup (Fin 2) →* unitary (higgsVec →L[] higgsVec) where
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
map_mul' g h := by
ext
simp
map_one' := by
ext
simp
map_mul' g h := by simp
map_one' := by simp
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
@[simps!]
@ -114,8 +107,7 @@ def rep : Representation gaugeGroup higgsVec :=
lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
simp only [higgsRepUnitary_apply_coe]
exact smul_mulVec_assoc (g.2.2 ^ 3) (g.2.1.1) φ
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
higgsRepUnitary_mul g φ
@ -133,13 +125,11 @@ def potential (φ : higgsVec) : := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^
lemma potential_invariant (φ : higgsVec) (g : gaugeGroup) :
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
simp only [potential, neg_mul]
rw [norm_invariant]
simp only [potential, neg_mul, norm_invariant]
lemma potential_as_quad (φ : higgsVec) :
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
simp [potential]
ring
simp [potential]; ring
end potentialDefn
section potentialProp
@ -161,11 +151,9 @@ lemma zero_le_potential_discrim (φ : higgsVec) :
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
have h1 := potential_as_quad μSq (λ) φ
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
rw [h1]
exact sq_nonneg (2 * (lambda ) * ‖φ‖ ^ 2 + -μSq)
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact ne_of_gt hLam
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact sq_nonneg (2 * lambda * ‖φ‖ ^ 2 + -μSq)
· exact ne_of_gt hLam
lemma potential_eq_zero_sol (φ : higgsVec)
(hV : potential μSq (λ) φ = 0) : φ = 0 ‖φ‖ ^ 2 = μSq / λ := by
@ -209,19 +197,14 @@ lemma potential_bounded_below (φ : higgsVec) :
lemma potential_bounded_below_of_μSq_nonpos {μSq : }
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq (λ) φ := by
simp only [potential, neg_mul, add_zero]
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
field_simp
rw [@mul_nonpos_iff]
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
field_simp [mul_nonpos_iff]
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
lemma potential_eq_bound_discrim_zero (φ : higgsVec)
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
simp [discrim, hV]
field_simp
ring
field_simp [discrim, hV]
lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
@ -229,81 +212,60 @@ lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
have h1 := potential_as_quad μSq (λ) φ
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
(potential_eq_bound_discrim_zero μSq hLam φ hV)] at h1
rw [h1]
field_simp
ring_nf
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
simp_rw [h1, neg_neg]
exact ne_of_gt hLam
lemma potential_eq_bound_iff (φ : higgsVec) :
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) := by
apply Iff.intro
· intro h
exact potential_eq_bound_higgsVec_sq μSq hLam φ h
· intro h
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by
ring_nf
field_simp [potential, hv, h]
ring
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) :=
Iff.intro (potential_eq_bound_higgsVec_sq μSq hLam φ)
(fun h ↦ by
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by ring_nf
field_simp [potential, hv, h]
ring_nf)
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : }
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 := by
apply Iff.intro
· intro h
exact potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h
· intro h
simp [potential, h]
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
Iff.intro (fun h ↦ potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h)
(fun h ↦ by simp [potential, h])
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
IsMinOn (potential μSq lambda) Set.univ φ := by
rw [isMinOn_univ_iff]
intro x
rw [hv]
exact potential_bounded_below μSq hLam x
rw [isMinOn_univ_iff, hv]
exact fun x ↦ potential_bounded_below μSq hLam x
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : }
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
IsMinOn (potential μSq lambda) Set.univ φ := by
rw [isMinOn_univ_iff]
intro x
rw [hv]
exact potential_bounded_below_of_μSq_nonpos hLam hμSq x
rw [isMinOn_univ_iff, hv]
exact fun x ↦ potential_bounded_below_of_μSq_nonpos hLam hμSq x
lemma potential_bound_reached_of_μSq_nonneg {μSq : } (hμSq : 0 ≤ μSq) :
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
use ![√(μSq/(2 * lambda)), 0]
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
simp [@PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
simp [PiLp.norm_sq_eq_of_L2]
field_simp [mul_pow]
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq : } (hμSq : 0 ≤ μSq) :
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
apply Iff.intro
apply Iff.intro <;> rw [← potential_eq_bound_iff μSq hLam φ]
· intro h
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
have hm := isMinOn_univ_iff.mp h φm
rw [hφ] at hm
have h1 := potential_bounded_below μSq hLam φ
rw [← potential_eq_bound_iff μSq hLam φ]
exact (Real.partialOrder.le_antisymm _ _ h1 hm).symm
· intro h
rw [← potential_eq_bound_iff μSq hLam φ] at h
exact potential_eq_bound_IsMinOn μSq hLam φ h
exact (Real.partialOrder.le_antisymm _ _ (potential_bounded_below μSq hLam φ) hm).symm
· exact potential_eq_bound_IsMinOn μSq hLam φ
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : } (hμSq : μSq ≤ 0) :
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
apply Iff.intro
apply Iff.intro <;> rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ]
· intro h
have h0 := isMinOn_univ_iff.mp h 0
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ)]
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
· intro h
rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
end potentialProp
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
@ -314,40 +276,31 @@ def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) :=
lemma rotateMatrix_star (φ : higgsVec) :
star φ.rotateMatrix =
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
simp [star]
rw [rotateMatrix, conjTranspose]
simp_rw [star, rotateMatrix, conjTranspose]
ext i j
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
lemma rotateMatrix_det {φ : higgsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
simp [rotateMatrix, det_fin_two]
have h1 : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp
field_simp [rotateMatrix, det_fin_two]
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
rfl
lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) := by
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
erw [mul_fin_two, one_fin_two]
have : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
congr
field_simp
ext i j
fin_cases i <;> fin_cases j <;> field_simp
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
<;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
rfl
· ring_nf
· ring_nf
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
rfl
lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) :=
@ -361,19 +314,22 @@ def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
rw [rep_apply]
simp [rotateGuageGroup, rotateMatrix]
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe]
ext i
fin_cases i
simp [mulVec, vecHead, vecTail]
ring_nf
simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons]
simp [mulVec, vecHead, vecTail]
have : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
· simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one,
cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd,
Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
ring_nf
· simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue,
cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one,
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
have : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
rfl
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
∃ (g : gaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by