commit
1cb2cdfd11
3 changed files with 101 additions and 190 deletions
|
@ -85,40 +85,22 @@ lemma η_transpose : η.transpose = η := by
|
|||
|
||||
@[simp]
|
||||
lemma det_η : η.det = - 1 := by
|
||||
simp only [η_explicit, det_succ_row_zero, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
|
||||
of_apply, cons_val', empty_val', cons_val_fin_one, cons_val_zero, submatrix_apply,
|
||||
Fin.succ_zero_eq_one, cons_val_one, head_cons, submatrix_submatrix, Function.comp_apply,
|
||||
Fin.succ_one_eq_two, cons_val_two, tail_cons, det_unique, Fin.default_eq_zero, cons_val_succ,
|
||||
head_fin_const, Fin.sum_univ_succ, Fin.val_zero, pow_zero, one_mul, Fin.zero_succAbove,
|
||||
Finset.univ_unique, Fin.val_succ, Fin.coe_fin_one, zero_add, pow_one, neg_mul,
|
||||
Fin.succ_succAbove_zero, Finset.sum_neg_distrib, Finset.sum_singleton, Fin.succ_succAbove_one,
|
||||
even_two, Even.neg_pow, one_pow, mul_one, mul_neg, neg_neg, mul_zero, neg_zero, add_zero,
|
||||
zero_mul, Finset.sum_const_zero]
|
||||
simp [η_explicit, det_succ_row_zero, Fin.sum_univ_succ]
|
||||
|
||||
@[simp]
|
||||
lemma η_sq : η * η = 1 := by
|
||||
funext μ ν
|
||||
rw [mul_apply, Fin.sum_univ_four]
|
||||
fin_cases μ <;> fin_cases ν <;>
|
||||
simp [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
|
||||
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
|
||||
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
|
||||
vecHead, vecTail, Function.comp_apply]
|
||||
simp [η_explicit, vecHead, vecTail]
|
||||
|
||||
lemma η_diag_mul_self (μ : Fin 4) : η μ μ * η μ μ = 1 := by
|
||||
fin_cases μ
|
||||
<;> simp [η_explicit]
|
||||
fin_cases μ <;> simp [η_explicit]
|
||||
|
||||
lemma η_mulVec (x : spaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by
|
||||
rw [explicit x]
|
||||
rw [η_explicit]
|
||||
rw [explicit x, η_explicit]
|
||||
funext i
|
||||
rw [mulVec, dotProduct, Fin.sum_univ_four]
|
||||
fin_cases i <;>
|
||||
simp [Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
|
||||
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
|
||||
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
|
||||
vecHead, vecTail, Function.comp_apply]
|
||||
simp [vecHead, vecTail]
|
||||
|
||||
/-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/
|
||||
@[simps!]
|
||||
|
@ -128,7 +110,7 @@ def linearMapForSpaceTime (x : spaceTime) : spaceTime →ₗ[ℝ] ℝ where
|
|||
simp only
|
||||
rw [mulVec_add, dotProduct_add]
|
||||
map_smul' c y := by
|
||||
simp only
|
||||
simp only [RingHom.id_apply, smul_eq_mul]
|
||||
rw [mulVec_smul, dotProduct_smul]
|
||||
rfl
|
||||
|
||||
|
@ -168,7 +150,7 @@ lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖
|
|||
|
||||
lemma ηLin_leq_time_sq (x : spaceTime) : ηLin x x ≤ x 0 ^ 2 := by
|
||||
rw [time_elm_sq_of_ηLin]
|
||||
apply (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
|
||||
exact (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
|
||||
|
||||
lemma ηLin_space_inner_product (x y : spaceTime) :
|
||||
ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ℝ := by
|
||||
|
@ -202,18 +184,18 @@ lemma ηLin_stdBasis_apply (μ : Fin 4) (x : spaceTime) : ηLin (stdBasis μ) x
|
|||
lemma ηLin_η_stdBasis (μ ν : Fin 4) : ηLin (stdBasis μ) (stdBasis ν) = η μ ν := by
|
||||
rw [ηLin_stdBasis_apply]
|
||||
by_cases h : μ = ν
|
||||
rw [stdBasis_apply]
|
||||
subst h
|
||||
simp only [↓reduceIte, mul_one]
|
||||
rw [stdBasis_not_eq, η_off_diagonal h]
|
||||
simp only [mul_zero]
|
||||
exact fun a => h (id a.symm)
|
||||
· rw [stdBasis_apply]
|
||||
subst h
|
||||
simp
|
||||
· rw [stdBasis_not_eq, η_off_diagonal h]
|
||||
simp only [mul_zero]
|
||||
exact fun a ↦ h (id a.symm)
|
||||
|
||||
lemma ηLin_mulVec_left (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||||
ηLin (Λ *ᵥ x) y = ηLin x ((η * Λᵀ * η) *ᵥ y) := by
|
||||
simp only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, mulVec_mulVec]
|
||||
rw [(vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec]
|
||||
rw [← mul_assoc, ← mul_assoc, η_sq, one_mul]
|
||||
simp [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply,
|
||||
mulVec_mulVec, (vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec,
|
||||
← mul_assoc, ← mul_assoc, η_sq, one_mul]
|
||||
|
||||
lemma ηLin_mulVec_right (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||||
ηLin x (Λ *ᵥ y) = ηLin ((η * Λᵀ * η) *ᵥ x) y := by
|
||||
|
@ -231,14 +213,14 @@ lemma ηLin_matrix_stdBasis' (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
|||
lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||||
Λ = 1 ↔ ∀ (x y : spaceTime), ηLin x y = ηLin x (Λ *ᵥ y) := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
subst h
|
||||
simp only [ηLin, one_mulVec, implies_true]
|
||||
intro h
|
||||
funext μ ν
|
||||
have h1 := h (stdBasis μ) (stdBasis ν)
|
||||
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
|
||||
fin_cases μ <;> fin_cases ν <;>
|
||||
· intro h
|
||||
subst h
|
||||
simp only [ηLin, one_mulVec, implies_true]
|
||||
· intro h
|
||||
funext μ ν
|
||||
have h1 := h (stdBasis μ) (stdBasis ν)
|
||||
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
|
||||
fin_cases μ <;> fin_cases ν <;>
|
||||
simp_all [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one,
|
||||
Matrix.cons_val_one,
|
||||
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
|
||||
|
@ -248,9 +230,6 @@ lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
|||
/-- The metric as a quadratic form on `spaceTime`. -/
|
||||
def quadraticForm : QuadraticForm ℝ spaceTime := ηLin.toQuadraticForm
|
||||
|
||||
|
||||
|
||||
|
||||
end spaceTime
|
||||
|
||||
end
|
||||
|
|
|
@ -51,7 +51,7 @@ instance : NormedAddCommGroup (Fin 2 → ℂ) := by
|
|||
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
|
||||
section. -/
|
||||
noncomputable def higgsVec.toField (φ : higgsVec) : higgsField where
|
||||
toFun := fun _ => φ
|
||||
toFun := fun _ ↦ φ
|
||||
contMDiff_toFun := by
|
||||
intro x
|
||||
rw [Bundle.contMDiffAt_section]
|
||||
|
@ -63,7 +63,6 @@ open Complex Real
|
|||
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
|
||||
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
|
||||
|
||||
|
||||
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, higgsVec) φ.toHiggsVec := by
|
||||
intro x0
|
||||
have h1 := φ.contMDiff x0
|
||||
|
@ -76,29 +75,25 @@ lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ
|
|||
exact h1
|
||||
|
||||
lemma toField_toHiggsVec_apply (φ : higgsField) (x : spaceTime) :
|
||||
(φ.toHiggsVec x).toField x = φ x := by
|
||||
rfl
|
||||
(φ.toHiggsVec x).toField x = φ x := rfl
|
||||
|
||||
lemma higgsVecToFin2ℂ_toHiggsVec (φ : higgsField) : higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := by
|
||||
ext x
|
||||
rfl
|
||||
lemma higgsVecToFin2ℂ_toHiggsVec (φ : higgsField) :
|
||||
higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := rfl
|
||||
|
||||
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ := by
|
||||
rw [← φ.higgsVecToFin2ℂ_toHiggsVec]
|
||||
exact Smooth.comp smooth_higgsVecToFin2ℂ (φ.toHiggsVec_smooth)
|
||||
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ :=
|
||||
smooth_higgsVecToFin2ℂ.comp φ.toHiggsVec_smooth
|
||||
|
||||
lemma apply_smooth (φ : higgsField) :
|
||||
∀ i, Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℂ) (fun (x : spaceTime) => (φ x i)) := by
|
||||
rw [← smooth_pi_space]
|
||||
exact φ.toVec_smooth
|
||||
∀ i, Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℂ) (fun (x : spaceTime) => (φ x i)) :=
|
||||
(smooth_pi_space).mp (φ.toVec_smooth)
|
||||
|
||||
lemma apply_re_smooth (φ : higgsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||||
Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.apply_smooth i)
|
||||
(ContinuousLinearMap.smooth reCLM).comp (φ.apply_smooth i)
|
||||
|
||||
lemma apply_im_smooth (φ : higgsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||||
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.apply_smooth i)
|
||||
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
|
||||
|
||||
/-- Given two `higgsField`, the map `spaceTime → ℂ` obtained by taking their inner product. -/
|
||||
def innerProd (φ1 φ2 : higgsField) : spaceTime → ℂ := fun x => ⟪φ1 x, φ2 x⟫_ℂ
|
||||
|
@ -115,9 +110,7 @@ lemma toHiggsVec_norm (φ : higgsField) (x : spaceTime) :
|
|||
lemma normSq_expand (φ : higgsField) :
|
||||
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
|
||||
funext x
|
||||
simp only [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||||
rw [@norm_sq_eq_inner ℂ]
|
||||
simp
|
||||
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ℂ]
|
||||
|
||||
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) φ.normSq := by
|
||||
rw [normSq_expand]
|
||||
|
@ -140,10 +133,10 @@ lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ,
|
|||
exact φ.apply_im_smooth 1
|
||||
|
||||
lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
|
||||
simp only [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
|
||||
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
|
||||
|
||||
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
|
||||
simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
|
||||
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
|
||||
|
||||
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
|
||||
@[simp]
|
||||
|
@ -153,10 +146,8 @@ def potential (φ : higgsField) (μSq lambda : ℝ ) (x : spaceTime) : ℝ :=
|
|||
lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ) :
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||||
simp only [potential, normSq, neg_mul]
|
||||
exact Smooth.add
|
||||
(Smooth.neg (Smooth.smul smooth_const φ.normSq_smooth))
|
||||
(Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth)
|
||||
|
||||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||
|
||||
lemma potential_apply (φ : higgsField) (μSq lambda : ℝ) (x : spaceTime) :
|
||||
(φ.potential μSq lambda) x = higgsVec.potential μSq lambda (φ.toHiggsVec x) := by
|
||||
|
@ -171,35 +162,20 @@ lemma isConst_of_higgsVec (φ : higgsVec) : φ.toField.isConst := by
|
|||
intro x _
|
||||
simp [higgsVec.toField]
|
||||
|
||||
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
use Φ 0
|
||||
ext x y
|
||||
rw [← h x 0]
|
||||
rfl
|
||||
intro h
|
||||
intro x y
|
||||
obtain ⟨φ, hφ⟩ := h
|
||||
subst hφ
|
||||
rfl
|
||||
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField :=
|
||||
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
|
||||
|
||||
lemma normSq_of_higgsVec (φ : higgsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
|
||||
simp only [normSq, higgsVec.toField]
|
||||
funext x
|
||||
simp
|
||||
simp [normSq, higgsVec.toField]
|
||||
|
||||
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ) :
|
||||
φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by
|
||||
simp [higgsVec.potential]
|
||||
unfold potential
|
||||
rw [normSq_of_higgsVec]
|
||||
funext x
|
||||
simp only [neg_mul, add_right_inj]
|
||||
ring_nf
|
||||
|
||||
|
||||
|
||||
end higgsField
|
||||
end
|
||||
end StandardModel
|
||||
|
|
|
@ -46,10 +46,8 @@ section higgsVec
|
|||
casting vectors. -/
|
||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
toFun x := x
|
||||
map_add' x y := by
|
||||
simp
|
||||
map_smul' a x := by
|
||||
simp
|
||||
map_add' x y := by simp
|
||||
map_smul' a x := by simp
|
||||
|
||||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||||
|
@ -63,11 +61,10 @@ noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
|||
map_mul' := by
|
||||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||||
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
|
||||
rw [repU1.map_mul, fundamentalSU2.map_mul]
|
||||
rw [mul_assoc, mul_assoc, ← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||||
rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc,
|
||||
← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||||
repeat rw [mul_assoc]
|
||||
map_one' := by
|
||||
simp only [Prod.snd_one, _root_.map_one, Prod.fst_one, mul_one]
|
||||
map_one' := by simp
|
||||
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
||||
|
@ -87,20 +84,16 @@ lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
|||
|
||||
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||||
matrixToLin g ∈ unitary (higgsVec →L[ℂ] higgsVec) := by
|
||||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul]
|
||||
rw [mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
|
||||
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||
simp
|
||||
|
||||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||||
of `higgsVec`. -/
|
||||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (higgsVec →L[ℂ] higgsVec) where
|
||||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||||
map_mul' g h := by
|
||||
ext
|
||||
simp
|
||||
map_one' := by
|
||||
ext
|
||||
simp
|
||||
map_mul' g h := by simp
|
||||
map_one' := by simp
|
||||
|
||||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||||
@[simps!]
|
||||
|
@ -114,8 +107,7 @@ def rep : Representation ℂ gaugeGroup higgsVec :=
|
|||
|
||||
lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
|
||||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||||
simp only [higgsRepUnitary_apply_coe]
|
||||
exact smul_mulVec_assoc (g.2.2 ^ 3) (g.2.1.1) φ
|
||||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||||
|
||||
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
@ -133,13 +125,11 @@ def potential (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^
|
|||
|
||||
lemma potential_invariant (φ : higgsVec) (g : gaugeGroup) :
|
||||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul]
|
||||
rw [norm_invariant]
|
||||
simp only [potential, neg_mul, norm_invariant]
|
||||
|
||||
lemma potential_as_quad (φ : higgsVec) :
|
||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||
simp [potential]
|
||||
ring
|
||||
simp [potential]; ring
|
||||
|
||||
end potentialDefn
|
||||
section potentialProp
|
||||
|
@ -161,11 +151,9 @@ lemma zero_le_potential_discrim (φ : higgsVec) :
|
|||
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
rw [h1]
|
||||
exact sq_nonneg (2 * (lambda ) * ‖φ‖ ^ 2 + -μSq)
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact sq_nonneg (2 * lambda * ‖φ‖ ^ 2 + -μSq)
|
||||
· exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_zero_sol (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / λ := by
|
||||
|
@ -209,19 +197,14 @@ lemma potential_bounded_below (φ : higgsVec) :
|
|||
|
||||
lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul, add_zero]
|
||||
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
|
||||
field_simp
|
||||
rw [@mul_nonpos_iff]
|
||||
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
field_simp [mul_nonpos_iff]
|
||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
lemma potential_eq_bound_discrim_zero (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||||
simp [discrim, hV]
|
||||
field_simp
|
||||
ring
|
||||
field_simp [discrim, hV]
|
||||
|
||||
lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
|
||||
|
@ -229,81 +212,60 @@ lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
|||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
(potential_eq_bound_discrim_zero μSq hLam φ hV)] at h1
|
||||
rw [h1]
|
||||
field_simp
|
||||
ring_nf
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
simp_rw [h1, neg_neg]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_bound_iff (φ : higgsVec) :
|
||||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_bound_higgsVec_sq μSq hLam φ h
|
||||
· intro h
|
||||
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by
|
||||
ring_nf
|
||||
field_simp [potential, hv, h]
|
||||
ring
|
||||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) :=
|
||||
Iff.intro (potential_eq_bound_higgsVec_sq μSq hLam φ)
|
||||
(fun h ↦ by
|
||||
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by ring_nf
|
||||
field_simp [potential, hv, h]
|
||||
ring_nf)
|
||||
|
||||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h
|
||||
· intro h
|
||||
simp [potential, h]
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
|
||||
Iff.intro (fun h ↦ potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h)
|
||||
(fun h ↦ by simp [potential, h])
|
||||
|
||||
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
|
||||
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
|
||||
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potential_bounded_below μSq hLam x
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below μSq hLam x
|
||||
|
||||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
use ![√(μSq/(2 * lambda)), 0]
|
||||
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
|
||||
simp [@PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
|
||||
simp [PiLp.norm_sq_eq_of_L2]
|
||||
field_simp [mul_pow]
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
|
||||
apply Iff.intro
|
||||
apply Iff.intro <;> rw [← potential_eq_bound_iff μSq hLam φ]
|
||||
· intro h
|
||||
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
|
||||
have hm := isMinOn_univ_iff.mp h φm
|
||||
rw [hφ] at hm
|
||||
have h1 := potential_bounded_below μSq hLam φ
|
||||
rw [← potential_eq_bound_iff μSq hLam φ]
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 hm).symm
|
||||
· intro h
|
||||
rw [← potential_eq_bound_iff μSq hLam φ] at h
|
||||
exact potential_eq_bound_IsMinOn μSq hLam φ h
|
||||
|
||||
exact (Real.partialOrder.le_antisymm _ _ (potential_bounded_below μSq hLam φ) hm).symm
|
||||
· exact potential_eq_bound_IsMinOn μSq hLam φ
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
apply Iff.intro <;> rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ]
|
||||
· intro h
|
||||
have h0 := isMinOn_univ_iff.mp h 0
|
||||
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
|
||||
have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ
|
||||
rw [← (potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ)]
|
||||
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
|
||||
· intro h
|
||||
rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h
|
||||
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
|
||||
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
|
||||
|
||||
end potentialProp
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
|
@ -314,40 +276,31 @@ def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
|||
lemma rotateMatrix_star (φ : higgsVec) :
|
||||
star φ.rotateMatrix =
|
||||
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
|
||||
simp [star]
|
||||
rw [rotateMatrix, conjTranspose]
|
||||
simp_rw [star, rotateMatrix, conjTranspose]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||||
|
||||
|
||||
lemma rotateMatrix_det {φ : higgsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||||
simp [rotateMatrix, det_fin_two]
|
||||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
field_simp [rotateMatrix, det_fin_two]
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
rfl
|
||||
|
||||
lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||||
erw [mul_fin_two, one_fin_two]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
congr
|
||||
field_simp
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> field_simp
|
||||
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
<;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
rfl
|
||||
· ring_nf
|
||||
· ring_nf
|
||||
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
rfl
|
||||
|
||||
lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||||
|
@ -361,19 +314,22 @@ def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
|
|||
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||||
rw [rep_apply]
|
||||
simp [rotateGuageGroup, rotateMatrix]
|
||||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||||
Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe]
|
||||
ext i
|
||||
fin_cases i
|
||||
simp [mulVec, vecHead, vecTail]
|
||||
ring_nf
|
||||
simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons]
|
||||
simp [mulVec, vecHead, vecTail]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
· simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one,
|
||||
cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||||
Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||||
ring_nf
|
||||
· simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue,
|
||||
cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one,
|
||||
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
rfl
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
||||
∃ (g : gaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue