Merge pull request #46 from pitmonticone/golf-proofs

Golf a few proofs
This commit is contained in:
Joseph Tooby-Smith 2024-06-09 11:28:26 -04:00 committed by GitHub
commit 1cb2cdfd11
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 101 additions and 190 deletions

View file

@ -85,40 +85,22 @@ lemma η_transpose : η.transpose = η := by
@[simp]
lemma det_η : η.det = - 1 := by
simp only [η_explicit, det_succ_row_zero, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
of_apply, cons_val', empty_val', cons_val_fin_one, cons_val_zero, submatrix_apply,
Fin.succ_zero_eq_one, cons_val_one, head_cons, submatrix_submatrix, Function.comp_apply,
Fin.succ_one_eq_two, cons_val_two, tail_cons, det_unique, Fin.default_eq_zero, cons_val_succ,
head_fin_const, Fin.sum_univ_succ, Fin.val_zero, pow_zero, one_mul, Fin.zero_succAbove,
Finset.univ_unique, Fin.val_succ, Fin.coe_fin_one, zero_add, pow_one, neg_mul,
Fin.succ_succAbove_zero, Finset.sum_neg_distrib, Finset.sum_singleton, Fin.succ_succAbove_one,
even_two, Even.neg_pow, one_pow, mul_one, mul_neg, neg_neg, mul_zero, neg_zero, add_zero,
zero_mul, Finset.sum_const_zero]
simp [η_explicit, det_succ_row_zero, Fin.sum_univ_succ]
@[simp]
lemma η_sq : η * η = 1 := by
funext μ ν
rw [mul_apply, Fin.sum_univ_four]
fin_cases μ <;> fin_cases ν <;>
simp [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
simp [η_explicit, vecHead, vecTail]
lemma η_diag_mul_self (μ : Fin 4) : η μ μ * η μ μ = 1 := by
fin_cases μ
<;> simp [η_explicit]
fin_cases μ <;> simp [η_explicit]
lemma η_mulVec (x : spaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by
rw [explicit x]
rw [η_explicit]
rw [explicit x, η_explicit]
funext i
rw [mulVec, dotProduct, Fin.sum_univ_four]
fin_cases i <;>
simp [Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
simp [vecHead, vecTail]
/-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/
@[simps!]
@ -128,7 +110,7 @@ def linearMapForSpaceTime (x : spaceTime) : spaceTime →ₗ[] where
simp only
rw [mulVec_add, dotProduct_add]
map_smul' c y := by
simp only
simp only [RingHom.id_apply, smul_eq_mul]
rw [mulVec_smul, dotProduct_smul]
rfl
@ -168,7 +150,7 @@ lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖
lemma ηLin_leq_time_sq (x : spaceTime) : ηLin x x ≤ x 0 ^ 2 := by
rw [time_elm_sq_of_ηLin]
apply (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
exact (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
lemma ηLin_space_inner_product (x y : spaceTime) :
ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ := by
@ -202,18 +184,18 @@ lemma ηLin_stdBasis_apply (μ : Fin 4) (x : spaceTime) : ηLin (stdBasis μ) x
lemma ηLin_η_stdBasis (μ ν : Fin 4) : ηLin (stdBasis μ) (stdBasis ν) = η μ ν := by
rw [ηLin_stdBasis_apply]
by_cases h : μ = ν
rw [stdBasis_apply]
subst h
simp only [↓reduceIte, mul_one]
rw [stdBasis_not_eq, η_off_diagonal h]
simp only [mul_zero]
exact fun a => h (id a.symm)
· rw [stdBasis_apply]
subst h
simp
· rw [stdBasis_not_eq, η_off_diagonal h]
simp only [mul_zero]
exact fun a ↦ h (id a.symm)
lemma ηLin_mulVec_left (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ) :
ηLin (Λ *ᵥ x) y = ηLin x ((η * Λᵀ * η) *ᵥ y) := by
simp only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, mulVec_mulVec]
rw [(vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec]
rw [← mul_assoc, ← mul_assoc, η_sq, one_mul]
simp [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply,
mulVec_mulVec, (vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec,
← mul_assoc, ← mul_assoc, η_sq, one_mul]
lemma ηLin_mulVec_right (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ) :
ηLin x (Λ *ᵥ y) = ηLin ((η * Λᵀ * η) *ᵥ x) y := by
@ -231,14 +213,14 @@ lemma ηLin_matrix_stdBasis' (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ) :
lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ) :
Λ = 1 ↔ ∀ (x y : spaceTime), ηLin x y = ηLin x (Λ *ᵥ y) := by
apply Iff.intro
intro h
subst h
simp only [ηLin, one_mulVec, implies_true]
intro h
funext μ ν
have h1 := h (stdBasis μ) (stdBasis ν)
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
fin_cases μ <;> fin_cases ν <;>
· intro h
subst h
simp only [ηLin, one_mulVec, implies_true]
· intro h
funext μ ν
have h1 := h (stdBasis μ) (stdBasis ν)
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
fin_cases μ <;> fin_cases ν <;>
simp_all [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one,
Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
@ -248,9 +230,6 @@ lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ) :
/-- The metric as a quadratic form on `spaceTime`. -/
def quadraticForm : QuadraticForm spaceTime := ηLin.toQuadraticForm
end spaceTime
end