feat: Unit and metric for Weyl
This commit is contained in:
parent
98e2f1865d
commit
1ceffaa329
6 changed files with 928 additions and 28 deletions
|
@ -4,10 +4,13 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.WeylFermion.Basic
|
||||
import LLMlean
|
||||
/-!
|
||||
|
||||
# Contraction of Weyl fermions
|
||||
|
||||
We define the contraction of Weyl fermions.
|
||||
|
||||
-/
|
||||
|
||||
namespace Fermion
|
||||
|
@ -128,9 +131,7 @@ def altRightBi : altRightHanded →ₗ[ℂ] rightHanded →ₗ[ℂ] ℂ where
|
|||
In index notation this is ψ_a φ^a. -/
|
||||
def leftAltContraction : leftHanded ⊗ altLeftHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where
|
||||
hom := TensorProduct.lift leftAltBi
|
||||
comm M := by
|
||||
apply TensorProduct.ext'
|
||||
intro ψ φ
|
||||
comm M := TensorProduct.ext' fun ψ φ => by
|
||||
change (M.1 *ᵥ ψ.toFin2ℂ) ⬝ᵥ (M.1⁻¹ᵀ *ᵥ φ.toFin2ℂ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ
|
||||
rw [dotProduct_mulVec, vecMul_transpose, mulVec_mulVec]
|
||||
simp
|
||||
|
@ -148,9 +149,7 @@ lemma leftAltContraction_hom_tmul (ψ : leftHanded) (φ : altLeftHanded) :
|
|||
In index notation this is φ^a ψ_a. -/
|
||||
def altLeftContraction : altLeftHanded ⊗ leftHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where
|
||||
hom := TensorProduct.lift altLeftBi
|
||||
comm M := by
|
||||
apply TensorProduct.ext'
|
||||
intro φ ψ
|
||||
comm M := TensorProduct.ext' fun φ ψ => by
|
||||
change (M.1⁻¹ᵀ *ᵥ φ.toFin2ℂ) ⬝ᵥ (M.1 *ᵥ ψ.toFin2ℂ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ
|
||||
rw [dotProduct_mulVec, mulVec_transpose, vecMul_vecMul]
|
||||
simp
|
||||
|
@ -170,13 +169,9 @@ The linear map from rightHandedWeyl ⊗ altRightHandedWeyl to ℂ given by
|
|||
-/
|
||||
def rightAltContraction : rightHanded ⊗ altRightHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where
|
||||
hom := TensorProduct.lift rightAltBi
|
||||
comm M := by
|
||||
apply TensorProduct.ext'
|
||||
intro ψ φ
|
||||
comm M := TensorProduct.ext' fun ψ φ => by
|
||||
change (M.1.map star *ᵥ ψ.toFin2ℂ) ⬝ᵥ (M.1⁻¹.conjTranspose *ᵥ φ.toFin2ℂ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ
|
||||
have h1 : (M.1)⁻¹ᴴ = ((M.1)⁻¹.map star)ᵀ := by
|
||||
rw [conjTranspose]
|
||||
exact rfl
|
||||
have h1 : (M.1)⁻¹ᴴ = ((M.1)⁻¹.map star)ᵀ := by rfl
|
||||
rw [dotProduct_mulVec, h1, vecMul_transpose, mulVec_mulVec]
|
||||
have h2 : ((M.1)⁻¹.map star * (M.1).map star) = 1 := by
|
||||
refine transpose_inj.mp ?_
|
||||
|
@ -189,23 +184,18 @@ def rightAltContraction : rightHanded ⊗ altRightHanded ⟶ 𝟙_ (Rep ℂ SL(2
|
|||
simp only [one_mulVec, vec2_dotProduct, Fin.isValue, RightHandedModule.toFin2ℂEquiv_apply,
|
||||
AltRightHandedModule.toFin2ℂEquiv_apply]
|
||||
|
||||
informal_definition altRightWeylContraction where
|
||||
math :≈ "The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to ℂ given by
|
||||
/--
|
||||
The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to ℂ given by
|
||||
summing over components of altRightHandedWeyl and rightHandedWeyl in the
|
||||
standard basis (i.e. the dot product)."
|
||||
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
|
||||
In index notation this is φ^{dot a} ψ_{dot a}."
|
||||
deps :≈ [``rightHanded, ``altRightHanded]
|
||||
|
||||
standard basis (i.e. the dot product).
|
||||
The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
|
||||
In index notation this is φ^{dot a} ψ_{dot a}.
|
||||
-/
|
||||
def altRightContraction : altRightHanded ⊗ rightHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where
|
||||
hom := TensorProduct.lift altRightBi
|
||||
comm M := by
|
||||
apply TensorProduct.ext'
|
||||
intro φ ψ
|
||||
comm M := TensorProduct.ext' fun φ ψ => by
|
||||
change (M.1⁻¹.conjTranspose *ᵥ φ.toFin2ℂ) ⬝ᵥ (M.1.map star *ᵥ ψ.toFin2ℂ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ
|
||||
have h1 : (M.1)⁻¹ᴴ = ((M.1)⁻¹.map star)ᵀ := by
|
||||
rw [conjTranspose]
|
||||
exact rfl
|
||||
have h1 : (M.1)⁻¹ᴴ = ((M.1)⁻¹.map star)ᵀ := by rfl
|
||||
rw [dotProduct_mulVec, h1, mulVec_transpose, vecMul_vecMul]
|
||||
have h2 : ((M.1)⁻¹.map star * (M.1).map star) = 1 := by
|
||||
refine transpose_inj.mp ?_
|
||||
|
@ -270,13 +260,12 @@ informal_lemma rightAltWeylContraction_invariant where
|
|||
informal_lemma rightAltWeylContraction_symm_altRightWeylContraction where
|
||||
math :≈ "The linear map altRightWeylContraction is rightAltWeylContraction composed
|
||||
with the braiding of the tensor product."
|
||||
deps :≈ [``rightAltContraction, ``altRightWeylContraction]
|
||||
deps :≈ [``rightAltContraction, ``altRightContraction]
|
||||
|
||||
informal_lemma altRightWeylContraction_invariant where
|
||||
math :≈ "The contraction altRightWeylContraction is invariant with respect to
|
||||
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
|
||||
deps :≈ [``altRightWeylContraction]
|
||||
|
||||
deps :≈ [``altRightContraction]
|
||||
|
||||
end
|
||||
end Fermion
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue