Merge pull request #54 from HEPLean/LorentzAlgebra
feat: Homomorphism from SL(2,C) to Lorentz Group
This commit is contained in:
commit
1d8c151dfb
7 changed files with 152 additions and 28 deletions
|
@ -68,6 +68,7 @@ import HepLean.SpaceTime.LorentzGroup.Orthochronous
|
|||
import HepLean.SpaceTime.LorentzGroup.Proper
|
||||
import HepLean.SpaceTime.LorentzGroup.Rotations
|
||||
import HepLean.SpaceTime.Metric
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import HepLean.StandardModel.Basic
|
||||
import HepLean.StandardModel.HiggsBoson.Basic
|
||||
import HepLean.StandardModel.HiggsBoson.TargetSpace
|
||||
|
|
|
@ -52,7 +52,7 @@ lemma charges_eq_toSpecies_eq (S T : (SMCharges n).charges) :
|
|||
exact fun a i => congrArg (⇑(toSpecies i)) a
|
||||
intro h
|
||||
apply toSpeciesEquiv.injective
|
||||
exact (Set.eqOn_univ (toSpeciesEquiv S) (toSpeciesEquiv T)).mp fun ⦃x⦄ a => h x
|
||||
exact (Set.eqOn_univ (toSpeciesEquiv S) (toSpeciesEquiv T)).mp fun ⦃x⦄ _ => h x
|
||||
|
||||
lemma toSMSpecies_toSpecies_inv (i : Fin 5) (f : (Fin 5 → Fin n → ℚ) ) :
|
||||
(toSpecies i) (toSpeciesEquiv.symm f) = f i := by
|
||||
|
|
|
@ -45,19 +45,17 @@ noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2
|
|||
|
||||
/-- The linear equivalence between the vector-space `spaceTime` and self-adjoint
|
||||
2×2-complex matrices. -/
|
||||
noncomputable def spaceTimeToHerm : spaceTime ≃ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where
|
||||
noncomputable def toSelfAdjointMatrix : spaceTime ≃ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where
|
||||
toFun := toSelfAdjointMatrix'
|
||||
invFun := fromSelfAdjointMatrix'
|
||||
left_inv x := by
|
||||
simp only [fromSelfAdjointMatrix', one_div, Fin.isValue, toSelfAdjointMatrix'_coe, of_apply,
|
||||
cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_cons,
|
||||
head_fin_const, add_add_sub_cancel, add_re, ofReal_re, mul_re, I_re, mul_zero, ofReal_im,
|
||||
I_im, mul_one, sub_self, add_zero, add_im, mul_im, zero_add, add_sub_sub_cancel,
|
||||
half_add_self]
|
||||
funext i
|
||||
fin_cases i <;> field_simp
|
||||
rfl
|
||||
rfl
|
||||
simp only [fromSelfAdjointMatrix', one_div, toSelfAdjointMatrix'_coe, of_apply, cons_val',
|
||||
cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_cons, head_fin_const,
|
||||
add_add_sub_cancel, add_re, ofReal_re, mul_re, I_re, mul_zero, ofReal_im, I_im, mul_one,
|
||||
sub_self, add_zero, add_im, mul_im, zero_add, add_sub_sub_cancel, half_add_self]
|
||||
field_simp [spaceTime]
|
||||
ext1 x
|
||||
fin_cases x <;> rfl
|
||||
right_inv x := by
|
||||
simp only [toSelfAdjointMatrix', toMatrix, fromSelfAdjointMatrix', one_div, Fin.isValue, add_re,
|
||||
sub_re, cons_val_zero, ofReal_mul, ofReal_inv, ofReal_ofNat, ofReal_add, cons_val_three,
|
||||
|
@ -73,19 +71,22 @@ noncomputable def spaceTimeToHerm : spaceTime ≃ₗ[ℝ] selfAdjoint (Matrix (F
|
|||
rfl
|
||||
exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 )
|
||||
map_add' x y := by
|
||||
simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, add_apply, ofReal_add,
|
||||
AddSubmonoid.mk_add_mk, of_add_of, add_cons, head_cons, tail_cons, empty_add_empty,
|
||||
Subtype.mk.injEq, EmbeddingLike.apply_eq_iff_eq]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, add_apply]
|
||||
<;> ring
|
||||
ext i j : 2
|
||||
simp only [toSelfAdjointMatrix'_coe, add_apply, ofReal_add, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, Matrix.add_apply]
|
||||
fin_cases i <;> fin_cases j <;> simp <;> ring
|
||||
map_smul' r x := by
|
||||
ext i j : 2
|
||||
simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, smul_apply, ofReal_mul,
|
||||
RingHom.id_apply]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, smul_apply]
|
||||
<;> ring
|
||||
|
||||
lemma det_eq_ηLin (x : spaceTime) : det (toSelfAdjointMatrix x).1 = ηLin x x := by
|
||||
simp [toSelfAdjointMatrix, ηLin_expand]
|
||||
ring_nf
|
||||
simp only [Fin.isValue, I_sq, mul_neg, mul_one]
|
||||
ring
|
||||
|
||||
end spaceTime
|
||||
|
|
|
@ -5,6 +5,7 @@ Authors: Joseph Tooby-Smith
|
|||
-/
|
||||
import HepLean.SpaceTime.Metric
|
||||
import HepLean.SpaceTime.FourVelocity
|
||||
import HepLean.SpaceTime.AsSelfAdjointMatrix
|
||||
import Mathlib.GroupTheory.SpecificGroups.KleinFour
|
||||
import Mathlib.Geometry.Manifold.Algebra.LieGroup
|
||||
import Mathlib.Analysis.Matrix
|
||||
|
@ -45,6 +46,30 @@ namespace PreservesηLin
|
|||
|
||||
variable (Λ : Matrix (Fin 4) (Fin 4) ℝ)
|
||||
|
||||
lemma iff_norm : PreservesηLin Λ ↔
|
||||
∀ (x : spaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ x) = ηLin x x := by
|
||||
refine Iff.intro (fun h x => h x x) (fun h x y => ?_)
|
||||
have hp := h (x + y)
|
||||
have hn := h (x - y)
|
||||
rw [mulVec_add] at hp
|
||||
rw [mulVec_sub] at hn
|
||||
simp only [map_add, LinearMap.add_apply, map_sub, LinearMap.sub_apply] at hp hn
|
||||
rw [ηLin_symm (Λ *ᵥ y) (Λ *ᵥ x), ηLin_symm y x] at hp hn
|
||||
linear_combination hp / 4 + -1 * hn / 4
|
||||
|
||||
lemma iff_det_selfAdjoint : PreservesηLin Λ ↔
|
||||
∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)),
|
||||
det ((toSelfAdjointMatrix ∘ toLin stdBasis stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
|
||||
= det x.1 := by
|
||||
rw [iff_norm]
|
||||
apply Iff.intro
|
||||
intro h x
|
||||
have h1 := congrArg ofReal $ h (toSelfAdjointMatrix.symm x)
|
||||
simpa [← det_eq_ηLin] using h1
|
||||
intro h x
|
||||
have h1 := h (toSelfAdjointMatrix x)
|
||||
simpa [det_eq_ηLin] using h1
|
||||
|
||||
lemma iff_on_right : PreservesηLin Λ ↔
|
||||
∀ (x y : spaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
|
||||
apply Iff.intro
|
||||
|
@ -74,14 +99,13 @@ lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
|
|||
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
|
||||
← mul_assoc, transpose_one] at h1
|
||||
rw [iff_matrix' Λ.transpose, ← h1]
|
||||
rw [← mul_assoc, ← mul_assoc]
|
||||
exact Matrix.mul_assoc (Λᵀ * η) Λᵀᵀ η
|
||||
noncomm_ring
|
||||
intro h
|
||||
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
|
||||
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
|
||||
← mul_assoc, transpose_one, transpose_transpose] at h1
|
||||
rw [iff_matrix', ← h1]
|
||||
repeat rw [← mul_assoc]
|
||||
noncomm_ring
|
||||
|
||||
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
|
||||
def liftGL {Λ : Matrix (Fin 4) (Fin 4) ℝ} (h : PreservesηLin Λ) : GL (Fin 4) ℝ :=
|
||||
|
|
|
@ -182,9 +182,7 @@ lemma ηLin_expand (x y : spaceTime) : ηLin x y = x 0 * y 0 - x 1 * y 1 - x 2 *
|
|||
|
||||
lemma ηLin_expand_self (x : spaceTime) : ηLin x x = x 0 ^ 2 - ‖x.space‖ ^ 2 := by
|
||||
rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three, ηLin_expand]
|
||||
simp only [Fin.isValue, space, cons_val_zero, RCLike.inner_apply, conj_trivial, cons_val_one,
|
||||
head_cons, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons]
|
||||
ring
|
||||
noncomm_ring
|
||||
|
||||
lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖ ^ 2 := by
|
||||
rw [ηLin_expand_self]
|
||||
|
@ -197,9 +195,7 @@ lemma ηLin_leq_time_sq (x : spaceTime) : ηLin x x ≤ x 0 ^ 2 := by
|
|||
lemma ηLin_space_inner_product (x y : spaceTime) :
|
||||
ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ℝ := by
|
||||
rw [ηLin_expand, @PiLp.inner_apply, Fin.sum_univ_three]
|
||||
simp only [Fin.isValue, space, cons_val_zero, RCLike.inner_apply, conj_trivial, cons_val_one,
|
||||
head_cons, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons]
|
||||
ring
|
||||
noncomm_ring
|
||||
|
||||
lemma ηLin_ge_abs_inner_product (x y : spaceTime) :
|
||||
x 0 * y 0 - ‖⟪x.space, y.space⟫_ℝ‖ ≤ (ηLin x y) := by
|
||||
|
|
93
HepLean/SpaceTime/SL2C/Basic.lean
Normal file
93
HepLean/SpaceTime/SL2C/Basic.lean
Normal file
|
@ -0,0 +1,93 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
/-!
|
||||
# The group SL(2, ℂ) and it's relation to the Lorentz group
|
||||
|
||||
The aim of this file is to give the relationship between `SL(2, ℂ)` and the Lorentz group.
|
||||
|
||||
## TODO
|
||||
|
||||
This file is a working progress.
|
||||
|
||||
-/
|
||||
namespace spaceTime
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
|
||||
namespace SL2C
|
||||
|
||||
open spaceTime
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- Given an element `M ∈ SL(2, ℂ)` the linear map from `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` to
|
||||
itself defined by `A ↦ M * A * Mᴴ`. -/
|
||||
@[simps!]
|
||||
def toLinearMapSelfAdjointMatrix (M : SL(2, ℂ)) :
|
||||
selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) →ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where
|
||||
toFun A := ⟨M.1 * A.1 * Matrix.conjTranspose M,
|
||||
by
|
||||
noncomm_ring [selfAdjoint.mem_iff, star_eq_conjTranspose,
|
||||
conjTranspose_mul, conjTranspose_conjTranspose,
|
||||
(star_eq_conjTranspose A.1).symm.trans $ selfAdjoint.mem_iff.mp A.2]⟩
|
||||
map_add' A B := by
|
||||
noncomm_ring [AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, AddSubmonoid.mk_add_mk,
|
||||
Subtype.mk.injEq]
|
||||
map_smul' r A := by
|
||||
noncomm_ring [selfAdjoint.val_smul, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
|
||||
RingHom.id_apply]
|
||||
|
||||
/-- The representation of `SL(2, ℂ)` on `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` given by
|
||||
`M A ↦ M * A * Mᴴ`. -/
|
||||
@[simps!]
|
||||
def repSelfAdjointMatrix : Representation ℝ SL(2, ℂ) $ selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where
|
||||
toFun := toLinearMapSelfAdjointMatrix
|
||||
map_one' := by
|
||||
noncomm_ring [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_one, one_mul,
|
||||
conjTranspose_one, mul_one, Subtype.coe_eta]
|
||||
map_mul' M N := by
|
||||
ext x i j : 3
|
||||
noncomm_ring [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_mul, mul_assoc,
|
||||
conjTranspose_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply]
|
||||
|
||||
/-- The representation of `SL(2, ℂ)` on `spaceTime` obtained from `toSelfAdjointMatrix` and
|
||||
`repSelfAdjointMatrix`. -/
|
||||
def repSpaceTime : Representation ℝ SL(2, ℂ) spaceTime where
|
||||
toFun M := toSelfAdjointMatrix.symm.comp ((repSelfAdjointMatrix M).comp
|
||||
toSelfAdjointMatrix.toLinearMap)
|
||||
map_one' := by
|
||||
ext
|
||||
simp
|
||||
map_mul' M N := by
|
||||
ext x : 3
|
||||
simp
|
||||
|
||||
/-- Given an element `M ∈ SL(2, ℂ)` the corresponding element of the Lorentz group. -/
|
||||
@[simps!]
|
||||
def toLorentzGroupElem (M : SL(2, ℂ)) : 𝓛 :=
|
||||
⟨LinearMap.toMatrix stdBasis stdBasis (repSpaceTime M) ,
|
||||
by simp [repSpaceTime, PreservesηLin.iff_det_selfAdjoint]⟩
|
||||
|
||||
/-- The group homomorphism from ` SL(2, ℂ)` to the Lorentz group `𝓛`. -/
|
||||
@[simps!]
|
||||
def toLorentzGroup : SL(2, ℂ) →* 𝓛 where
|
||||
toFun := toLorentzGroupElem
|
||||
map_one' := by
|
||||
simp only [toLorentzGroupElem, _root_.map_one, LinearMap.toMatrix_one]
|
||||
rfl
|
||||
map_mul' M N := by
|
||||
apply Subtype.eq
|
||||
simp only [toLorentzGroupElem, _root_.map_mul, LinearMap.toMatrix_mul,
|
||||
lorentzGroupIsGroup_mul_coe]
|
||||
|
||||
end
|
||||
end SL2C
|
||||
|
||||
end spaceTime
|
|
@ -14,6 +14,15 @@ A project to digitalize high energy physics.
|
|||
- Keep the database up-to date with developments in MathLib4.
|
||||
- Create gitHub workflows of relevance to the high energy physics community.
|
||||
|
||||
## Areas of high energy physics currently covered
|
||||
|
||||
|
||||
[](https://heplean.github.io/HepLean/HepLean/FlavorPhysics/CKMMatrix/Basic.html)
|
||||
[](https://heplean.github.io/HepLean/HepLean/StandardModel/HiggsBoson/Basic.html)
|
||||
[](https://heplean.github.io/HepLean/HepLean/BeyondTheStandardModel/TwoHDM/Basic.html)
|
||||
[](https://heplean.github.io/HepLean/HepLean/SpaceTime/LorentzGroup/Basic.html)
|
||||
[](https://heplean.github.io/HepLean/HepLean/AnomalyCancellation/Basic.html)
|
||||
|
||||
## Where to learn more
|
||||
|
||||
- Read the associated paper:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue