refactor: Lint
This commit is contained in:
parent
6c359a3737
commit
1e57e50d5e
2 changed files with 3 additions and 5 deletions
|
@ -74,7 +74,6 @@ lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ :
|
|||
| (0 : Fin 2) => rfl
|
||||
| (1 : Fin 2) => rfl
|
||||
|
||||
|
||||
set_option maxRecDepth 20000 in
|
||||
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||||
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
|
||||
|
@ -106,7 +105,6 @@ lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
|||
ext x
|
||||
exact Fin.elim0 x
|
||||
|
||||
|
||||
set_option maxRecDepth 20000 in
|
||||
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
|
||||
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||||
|
|
|
@ -102,7 +102,7 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
subst haa'
|
||||
simp_all
|
||||
refine h1' ?_ ?_ ?_
|
||||
|
@ -111,11 +111,11 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
· refine h1n' ?_ ?_ ?_
|
||||
rfl
|
||||
· change _ = ((S.FDiscrete.map (Discrete.eqToHom _)) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom
|
||||
( (x (q.swap.i.succAbove q.swap.j)))
|
||||
(x (q.swap.i.succAbove q.swap.j))
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
have h1nn' {a b d: Fin n.succ.succ} (hbd : b = d) (h : c d = S.τ (S.τ (c a))):
|
||||
have h1nn' {a b d: Fin n.succ.succ} (hbd : b = d) (h : c d = S.τ (S.τ (c a))) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (eqToHom (by
|
||||
subst hbd
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue