refactor: Fix problem with elab and do lint
This commit is contained in:
parent
95857993b5
commit
1e8efdb16a
6 changed files with 217 additions and 152 deletions
|
@ -203,7 +203,8 @@ lemma rightAltContraction_hom_tmul (ψ : rightHanded) (φ : altRightHanded) :
|
|||
rfl
|
||||
|
||||
lemma rightAltContraction_basis (i j : Fin 2) :
|
||||
rightAltContraction.hom (rightBasis i ⊗ₜ altRightBasis j) = if i.1 = j.1 then (1 : ℂ) else 0 := by
|
||||
rightAltContraction.hom (rightBasis i ⊗ₜ altRightBasis j) =
|
||||
if i.1 = j.1 then (1 : ℂ) else 0 := by
|
||||
rw [rightAltContraction_hom_tmul]
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2ℂ, altRightBasis_toFin2ℂ,
|
||||
dotProduct_single, mul_one]
|
||||
|
@ -242,7 +243,8 @@ lemma altRightContraction_hom_tmul (φ : altRightHanded) (ψ : rightHanded) :
|
|||
rfl
|
||||
|
||||
lemma altRightContraction_basis (i j : Fin 2) :
|
||||
altRightContraction.hom (altRightBasis i ⊗ₜ rightBasis j) = if i.1 = j.1 then (1 : ℂ) else 0 := by
|
||||
altRightContraction.hom (altRightBasis i ⊗ₜ rightBasis j) =
|
||||
if i.1 = j.1 then (1 : ℂ) else 0 := by
|
||||
rw [altRightContraction_hom_tmul]
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2ℂ, altRightBasis_toFin2ℂ,
|
||||
dotProduct_single, mul_one]
|
||||
|
|
|
@ -125,7 +125,8 @@ def altRightAltRightToMatrix : (altRightHanded ⊗ altRightHanded).V ≃ₗ[ℂ]
|
|||
|
||||
/-- Expanding `altRightAltRightToMatrix` in terms of the standard basis. -/
|
||||
lemma altRightAltRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||||
altRightAltRightToMatrix.symm M = ∑ i, ∑ j, M i j • (altRightBasis i ⊗ₜ[ℂ] altRightBasis j) := by
|
||||
altRightAltRightToMatrix.symm M =
|
||||
∑ i, ∑ j, M i j • (altRightBasis i ⊗ₜ[ℂ] altRightBasis j) := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, altRightAltRightToMatrix,
|
||||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||||
|
|
|
@ -119,7 +119,8 @@ And related results.
|
|||
-/
|
||||
open complexLorentzTensor
|
||||
|
||||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm
|
||||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
|
||||
finSumFinEquiv.symm
|
||||
|
||||
lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
|
||||
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
|
@ -141,7 +142,7 @@ lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.righ
|
|||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _]
|
||||
rw [← add_assoc]
|
||||
simp only [add_tensor, smul_tensor, tensorNode_tensor]
|
||||
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
+- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||
+- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)
|
||||
|
@ -153,10 +154,11 @@ lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.righ
|
|||
funext x
|
||||
fin_cases x <;> rfl
|
||||
|
||||
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 0 ∘ Fin.succAbove 1)
|
||||
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
|
||||
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1)
|
||||
|
||||
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
||||
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) :=
|
||||
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
||||
|
||||
lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(t : TensorTree complexLorentzTensor c) :
|
||||
|
@ -164,12 +166,12 @@ lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentz
|
|||
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||||
(((t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||
(((t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||
(((t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||||
((TensorTree.smul (-I) ((t.prod (tensorNode
|
||||
((TensorTree.smul (-I) ((t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||||
((TensorTree.smul I ((t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||||
|
@ -180,7 +182,7 @@ lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentz
|
|||
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
|
||||
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
|
||||
rw [prod_add _ _ _]
|
||||
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
||||
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
|
@ -188,39 +190,41 @@ lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentz
|
|||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||||
/- Moving smuls. -/
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| prod_smul _ _ _]
|
||||
rfl
|
||||
|
||||
|
||||
lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
|
||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
||||
(contr i j h (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
(h : (pauliMatrixContrMap c) (i.succAbove j) =
|
||||
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
||||
(contr i j h (TensorTree.prod t
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor))).tensor =
|
||||
((contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||||
((contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||||
((contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||||
((contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||||
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
||||
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||||
((TensorTree.smul I (contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||||
((contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
|
||||
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
|
||||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
||||
(basisVector ![Color.up, Color.upL, Color.upR]
|
||||
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
||||
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
|
||||
/- Moving contr over add. -/
|
||||
rw [contr_add]
|
||||
|
@ -244,12 +248,15 @@ lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorent
|
|||
|
||||
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||
((pauliMatrixContrMap c) i))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
|
||||
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i))
|
||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
|
||||
(finSumFinEquiv.symm i))
|
||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
|
||||
(basisVector c' (b' 0 0 0))))).add
|
||||
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
|
||||
|
@ -276,31 +283,41 @@ lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → comple
|
|||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||||
<| prod_basisVector_tree _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
|
||||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||
rfl
|
||||
|
||||
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||
((pauliMatrixContrMap c) i))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||||
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
|
||||
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i))
|
||||
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
|
||||
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
||||
(finSumFinEquiv.symm i))
|
||||
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
|
||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor))).tensor = (((
|
||||
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0)) (tensorNode (basisVector c' (b' 0 0 0))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1)) (tensorNode (basisVector c' (b' 0 1 1))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1)) (tensorNode (basisVector c' (b' 1 0 1))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add
|
||||
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||||
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add
|
||||
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0))
|
||||
(tensorNode (basisVector c' (b' 0 0 0))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1))
|
||||
(tensorNode (basisVector c' (b' 0 1 1))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1))
|
||||
(tensorNode (basisVector c' (b' 1 0 1))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0))
|
||||
(tensorNode (basisVector c' (b' 1 1 0))))).add
|
||||
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1))
|
||||
(tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||||
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0))
|
||||
(tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0))
|
||||
(tensorNode (basisVector c' (b' 3 0 0))))).add
|
||||
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
|
||||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
||||
|
@ -319,8 +336,8 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complex
|
|||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
smul_tensor_eq <| contr_basisVector_tree _]
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
smul_tensor_eq <| contr_basisVector_tree _]
|
||||
|
||||
lemma pauliMatrix_contr_down_0 :
|
||||
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||||
|
@ -344,7 +361,7 @@ lemma pauliMatrix_contr_down_0 :
|
|||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_down_0_tree :
|
||||
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||||
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor
|
||||
= (TensorTree.add (tensorNode
|
||||
|
@ -352,10 +369,9 @@ lemma pauliMatrix_contr_down_0_tree :
|
|||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
|
||||
exact pauliMatrix_contr_down_0
|
||||
|
||||
lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl
|
||||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor
|
||||
lemma pauliMatrix_contr_down_1 :
|
||||
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗
|
||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||||
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
|
@ -373,20 +389,19 @@ lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_down_1_tree : (contr 0 1 rfl
|
||||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor
|
||||
= (TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
|
||||
lemma pauliMatrix_contr_down_1_tree :
|
||||
{(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗
|
||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||
= (TensorTree.add (tensorNode
|
||||
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
|
||||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
|
||||
exact pauliMatrix_contr_down_1
|
||||
|
||||
lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl
|
||||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor
|
||||
lemma pauliMatrix_contr_down_2 :
|
||||
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||||
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
||||
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -403,21 +418,19 @@ lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_down_2_tree : (contr 0 1 rfl
|
||||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor =
|
||||
lemma pauliMatrix_contr_down_2_tree :
|
||||
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗
|
||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
||||
(TensorTree.add
|
||||
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
|
||||
(smul I (tensorNode (basisVector
|
||||
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
|
||||
exact pauliMatrix_contr_down_2
|
||||
|
||||
lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl
|
||||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor
|
||||
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||||
lemma pauliMatrix_contr_down_3 :
|
||||
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||||
+ (- 1 : ℂ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -435,27 +448,23 @@ lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_down_3_tree : (contr 0 1 rfl
|
||||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor =
|
||||
lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗
|
||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
|
||||
(TensorTree.add
|
||||
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
|
||||
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
|
||||
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
|
||||
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
||||
exact pauliMatrix_contr_down_3
|
||||
|
||||
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
|
||||
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 0 ∘ Fin.succAbove 1)
|
||||
![Color.up, Color.upL, Color.upR] ∘
|
||||
⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 0 ∘ Fin.succAbove 2)
|
||||
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 0 ∘ Fin.succAbove 2)
|
||||
|
||||
lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||
lemma pauliMatrix_contr_lower_0_0_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
|
@ -473,10 +482,10 @@ lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
lemma pauliMatrix_contr_lower_0_1_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||||
|
@ -494,10 +503,10 @@ lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
lemma pauliMatrix_contr_lower_1_0_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -515,10 +524,10 @@ lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
lemma pauliMatrix_contr_lower_1_1_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -536,12 +545,12 @@ lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor =
|
||||
lemma pauliMatrix_contr_lower_2_0_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||
+ (I) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -558,12 +567,12 @@ lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor =
|
||||
lemma pauliMatrix_contr_lower_2_1_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||
+ (I) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -580,13 +589,12 @@ lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||
lemma pauliMatrix_contr_lower_3_0_0 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -603,12 +611,12 @@ lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl
|
|||
funext k
|
||||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl
|
||||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1))).prod
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor)))).tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||
lemma pauliMatrix_contr_lower_3_1_1 :
|
||||
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
+ (-1 : ℂ) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||||
|
@ -656,8 +664,10 @@ lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor
|
|||
/- Replacing the contractions. -/
|
||||
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_2_tree]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| pauliMatrix_contr_down_3_tree]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||
pauliMatrix_contr_down_2_tree]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <|
|
||||
pauliMatrix_contr_down_3_tree]
|
||||
/- Simplifying -/
|
||||
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
|
||||
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
|
||||
|
@ -686,7 +696,8 @@ lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsT
|
|||
rfl
|
||||
|
||||
lemma pauliMatrix_contract_pauliMatrix_aux :
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
||||
= ((tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
||||
|
@ -701,57 +712,89 @@ lemma pauliMatrix_contract_pauliMatrix_aux :
|
|||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||||
((TensorTree.smul I (tensorNode
|
||||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
||||
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||||
I •
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||||
((TensorTree.smul (-I) (tensorNode
|
||||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
||||
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||||
((TensorTree.smul (-1) (tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||||
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
|
||||
(-1 : ℂ) •
|
||||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
|
||||
(tensorNode
|
||||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
||||
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
|
||||
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||||
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
|
||||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree]
|
||||
/- Moving the prod through additions. -/
|
||||
rw [contr_tensor_eq <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||||
/- Moving the prod through smuls. -/
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||
smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||
smul_prod _ _ _]
|
||||
/- Moving contraction through addition. -/
|
||||
rw [contr_add]
|
||||
rw [add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| contr_add _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||||
/- Moving contraction through smul. -/
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||
contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||||
/- Replacing the contractions. -/
|
||||
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_1_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_0_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_1_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_1_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <|
|
||||
pauliMatrix_contr_lower_0_1_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
|
||||
smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <|
|
||||
pauliMatrix_contr_lower_2_0_1]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor
|
||||
<| pauliMatrix_contr_lower_2_1_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
|
||||
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
|
||||
pauliMatrix_contr_lower_3_1_1]
|
||||
|
||||
lemma pauliMatrix_contract_pauliMatrix :
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
|
||||
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
||||
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
||||
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||
|
@ -762,7 +805,7 @@ lemma pauliMatrix_contract_pauliMatrix :
|
|||
neg_mul, _root_.neg_neg]
|
||||
ring_nf
|
||||
rw [Complex.I_sq]
|
||||
simp only [ neg_smul, one_smul, _root_.neg_neg]
|
||||
simp only [neg_smul, one_smul, _root_.neg_neg]
|
||||
abel
|
||||
|
||||
end Fermion
|
||||
|
|
|
@ -207,6 +207,8 @@ def discreteSumEquiv {X Y : OverColor C} (i : X.left ⊕ Y.left) :
|
|||
| Sum.inl _ => LinearEquiv.refl _ _
|
||||
| Sum.inr _ => LinearEquiv.refl _ _
|
||||
|
||||
/-- An equivalence used in the lemma of `μ_tmul_tprod_mk`. Identical to `μModEquiv`
|
||||
except with arguments based on maps instead of elements of `OverColor C`. -/
|
||||
def discreteSumEquiv' {X Y : Type} {cX : X → C} {cY : Y → C} (i : X ⊕ Y) :
|
||||
Sum.elim (fun i => F.obj (Discrete.mk (cX i)))
|
||||
(fun i => F.obj (Discrete.mk (cY i))) i ≃ₗ[k] F.obj (Discrete.mk ((Sum.elim cX cY) i)) :=
|
||||
|
@ -271,7 +273,8 @@ lemma μ_tmul_tprod {X Y : OverColor C} (p : (i : X.left) → F.obj (Discrete.mk
|
|||
lemma μ_tmul_tprod_mk {X Y : Type} {cX : X → C} {cY : Y → C}
|
||||
(p : (i : X) → F.obj (Discrete.mk <| cX i))
|
||||
(q : (i : Y) → (F.obj <| Discrete.mk (cY i))) :
|
||||
(μ F (OverColor.mk cX) (OverColor.mk cY)).hom.hom (PiTensorProduct.tprod k p ⊗ₜ[k] PiTensorProduct.tprod k q)
|
||||
(μ F (OverColor.mk cX) (OverColor.mk cY)).hom.hom
|
||||
(PiTensorProduct.tprod k p ⊗ₜ[k] PiTensorProduct.tprod k q)
|
||||
= (PiTensorProduct.tprod k) fun i =>
|
||||
discreteSumEquiv' F i (HepLean.PiTensorProduct.elimPureTensor p q i) := by
|
||||
let q' : (i : (OverColor.mk cY).left) → (F.obj <| Discrete.mk ((OverColor.mk cY).hom i)) := q
|
||||
|
|
|
@ -152,8 +152,11 @@ def getNoIndicesExact (stx : Syntax) : TermElabM ℕ := do
|
|||
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
|
||||
let typeC ← inferType c
|
||||
match typeC with
|
||||
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal n))) _)) _ _ =>
|
||||
return n
|
||||
| Expr.forallE _ (Expr.app _ a) _ _ =>
|
||||
let a' ← whnf a
|
||||
match a' with
|
||||
| Expr.lit (Literal.natVal n) => return n
|
||||
|_ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
|
||||
| _ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
|
||||
| _ => return 1
|
||||
| k => return k
|
||||
|
@ -248,11 +251,7 @@ def termNodeSyntax (T : Term) : TermElabM Term := do
|
|||
| _ =>
|
||||
match type with
|
||||
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
|
||||
let typeC ← inferType c
|
||||
match typeC with
|
||||
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal _))) _)) _ _ =>
|
||||
return Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
|
||||
| _ => throwError "Could not create terminal node syntax (termNodeSyntax). "
|
||||
| _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T]
|
||||
|
||||
/-- Adjusts a list `List ℕ` by subtracting from each natrual number the number
|
||||
|
@ -547,5 +546,14 @@ elab_rules (kind:=tensorExprSyntax) : term
|
|||
| `(term| {$e:tensorExpr}ᵀ) => do
|
||||
let tensorTree ← elaborateTensorNode e
|
||||
return tensorTree
|
||||
/-!
|
||||
|
||||
## Test cases
|
||||
|
||||
-/
|
||||
|
||||
variable {S : TensorSpecies} {c : Fin (Nat.succ (Nat.succ 0)) → S.C} {t : S.F.obj (OverColor.mk c)}
|
||||
/-
|
||||
#check {t | α β}ᵀ
|
||||
-/
|
||||
end TensorTree
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue