refactor: Fix problem with elab and do lint

This commit is contained in:
jstoobysmith 2024-10-24 07:36:54 +00:00
parent 95857993b5
commit 1e8efdb16a
6 changed files with 217 additions and 152 deletions

View file

@ -203,7 +203,8 @@ lemma rightAltContraction_hom_tmul (ψ : rightHanded) (φ : altRightHanded) :
rfl rfl
lemma rightAltContraction_basis (i j : Fin 2) : lemma rightAltContraction_basis (i j : Fin 2) :
rightAltContraction.hom (rightBasis i ⊗ₜ altRightBasis j) = if i.1 = j.1 then (1 : ) else 0 := by rightAltContraction.hom (rightBasis i ⊗ₜ altRightBasis j) =
if i.1 = j.1 then (1 : ) else 0 := by
rw [rightAltContraction_hom_tmul] rw [rightAltContraction_hom_tmul]
simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2, altRightBasis_toFin2, simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2, altRightBasis_toFin2,
dotProduct_single, mul_one] dotProduct_single, mul_one]
@ -242,7 +243,8 @@ lemma altRightContraction_hom_tmul (φ : altRightHanded) (ψ : rightHanded) :
rfl rfl
lemma altRightContraction_basis (i j : Fin 2) : lemma altRightContraction_basis (i j : Fin 2) :
altRightContraction.hom (altRightBasis i ⊗ₜ rightBasis j) = if i.1 = j.1 then (1 : ) else 0 := by altRightContraction.hom (altRightBasis i ⊗ₜ rightBasis j) =
if i.1 = j.1 then (1 : ) else 0 := by
rw [altRightContraction_hom_tmul] rw [altRightContraction_hom_tmul]
simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2, altRightBasis_toFin2, simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2, altRightBasis_toFin2,
dotProduct_single, mul_one] dotProduct_single, mul_one]

View file

@ -125,7 +125,8 @@ def altRightAltRightToMatrix : (altRightHanded ⊗ altRightHanded).V ≃ₗ[]
/-- Expanding `altRightAltRightToMatrix` in terms of the standard basis. -/ /-- Expanding `altRightAltRightToMatrix` in terms of the standard basis. -/
lemma altRightAltRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ) : lemma altRightAltRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ) :
altRightAltRightToMatrix.symm M = ∑ i, ∑ j, M i j • (altRightBasis i ⊗ₜ[] altRightBasis j) := by altRightAltRightToMatrix.symm M =
∑ i, ∑ j, M i j • (altRightBasis i ⊗ₜ[] altRightBasis j) := by
simp only [Action.instMonoidalCategory_tensorObj_V, altRightAltRightToMatrix, simp only [Action.instMonoidalCategory_tensorObj_V, altRightAltRightToMatrix,
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply] LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
rw [Finsupp.linearCombination_apply_of_mem_supported (s := Finset.univ)] rw [Finsupp.linearCombination_apply_of_mem_supported (s := Finset.univ)]

View file

@ -119,7 +119,8 @@ And related results.
-/ -/
open complexLorentzTensor open complexLorentzTensor
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
finSumFinEquiv.symm
lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
@ -141,7 +142,7 @@ lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.righ
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _]
rw [← add_assoc] rw [← add_assoc]
simp only [add_tensor, smul_tensor, tensorNode_tensor] simp only [add_tensor, smul_tensor, tensorNode_tensor]
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) +- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
+- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) + basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)
@ -153,10 +154,11 @@ lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.righ
funext x funext x
fin_cases x <;> rfl fin_cases x <;> rfl
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘ def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
Fin.succAbove 0 ∘ Fin.succAbove 1) ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1)
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) :=
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C} lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) : (t : TensorTree complexLorentzTensor c) :
@ -164,12 +166,12 @@ lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentz
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
(((t.prod (tensorNode (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
(((t.prod (tensorNode (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
(((t.prod (tensorNode (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) ((t.prod (tensorNode ((TensorTree.smul (-I) ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I ((t.prod (tensorNode ((TensorTree.smul I ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
@ -180,7 +182,7 @@ lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentz
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree] rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
rw [prod_add _ _ _] rw [prod_add _ _ _]
rw [add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
@ -188,39 +190,41 @@ lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentz
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
/- Moving smuls. -/ /- Moving smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_smul _ _ _] <| add_tensor_eq_snd <| prod_smul _ _ _]
rfl rfl
lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C} lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2)) (t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) : (h : (pauliMatrixContrMap c) (i.succAbove j) =
(contr i j h (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
(contr i j h (TensorTree.prod t
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = PauliMatrix.asConsTensor))).tensor =
((contr i j h (t.prod (tensorNode ((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
((contr i j h (t.prod (tensorNode ((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode ((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode ((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode ((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I (contr i j h (t.prod (tensorNode ((TensorTree.smul I (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((contr i j h (t.prod (tensorNode ((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode (TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by (basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _] rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
/- Moving contr over add. -/ /- Moving contr over add. -/
rw [contr_add] rw [contr_add]
@ -244,12 +248,15 @@ lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorent
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → complexLorentzTensor.C} lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2)) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) : ((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) ((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR (finSumFinEquiv.symm i))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
(basisVector c' (b' 0 0 0))))).add (basisVector c' (b' 0 0 0))))).add
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add ((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
@ -276,31 +283,41 @@ lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → comple
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _] <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _] <| contr_tensor_eq <| prod_basisVector_tree _ _]
rfl rfl
lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C} lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2)) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) : ((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j ∘ Fin.succAbove i ∘ Fin.succAbove j
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) → let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k)) let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = ((( PauliMatrix.asConsTensor))).tensor = (((
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0)) (tensorNode (basisVector c' (b' 0 0 0))))).add TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0))
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1)) (tensorNode (basisVector c' (b' 0 1 1))))).add (tensorNode (basisVector c' (b' 0 0 0))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1)) (tensorNode (basisVector c' (b' 1 0 1))))).add (((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1))
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add (tensorNode (basisVector c' (b' 0 1 1))))).add
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add (((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1))
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add (tensorNode (basisVector c' (b' 1 0 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add (((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0))
(tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1))
(tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0))
(tensorNode (basisVector c' (b' 2 1 0)))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0))
(tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode (TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by (basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [basis_contr_pauliMatrix_basis_tree_expand'] rw [basis_contr_pauliMatrix_basis_tree_expand']
@ -319,8 +336,8 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complex
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree _] smul_tensor_eq <| contr_basisVector_tree _]
lemma pauliMatrix_contr_down_0 : lemma pauliMatrix_contr_down_0 :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
@ -344,7 +361,7 @@ lemma pauliMatrix_contr_down_0 :
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_down_0_tree : lemma pauliMatrix_contr_down_0_tree :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor PauliMatrix.asConsTensor)))).tensor
= (TensorTree.add (tensorNode = (TensorTree.add (tensorNode
@ -352,10 +369,9 @@ lemma pauliMatrix_contr_down_0_tree :
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
exact pauliMatrix_contr_down_0 exact pauliMatrix_contr_down_0
lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl lemma pauliMatrix_contr_down_1 :
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod {(basisVector ![Color.down, Color.down] fun x => 1) | μ ν
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1) = basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by + basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
@ -373,20 +389,19 @@ lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_down_1_tree : (contr 0 1 rfl lemma pauliMatrix_contr_down_1_tree :
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod {(basisVector ![Color.down, Color.down] fun x => 1) | μ ν
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
PauliMatrix.asConsTensor)))).tensor = (TensorTree.add (tensorNode
= (TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))) (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
exact pauliMatrix_contr_down_1 exact pauliMatrix_contr_down_1
lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl lemma pauliMatrix_contr_down_2 :
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod {(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
PauliMatrix.asConsTensor)))).tensor
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1) = (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by + (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -403,21 +418,19 @@ lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_down_2_tree : (contr 0 1 rfl lemma pauliMatrix_contr_down_2_tree :
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod {(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor =
(TensorTree.add (TensorTree.add
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) (smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
(smul I (tensorNode (basisVector (smul I (tensorNode (basisVector
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
exact pauliMatrix_contr_down_2 exact pauliMatrix_contr_down_2
lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl lemma pauliMatrix_contr_down_3 :
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ (- 1 : ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by + (- 1 : ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -435,27 +448,23 @@ lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_down_3_tree : (contr 0 1 rfl lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
(TensorTree.add (TensorTree.add
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) ((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap (smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by (fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
exact pauliMatrix_contr_down_3 exact pauliMatrix_contr_down_3
def pauliMatrixContrPauliMatrixMap := ((Sum.elim def pauliMatrixContrPauliMatrixMap := ((Sum.elim
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘ ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1) Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
![Color.up, Color.upL, Color.upR] ∘ Fin.succAbove 0 ∘ Fin.succAbove 2)
⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 2)
lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_0_0_0 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos, rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
@ -473,10 +482,10 @@ lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_0_1_1 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos, rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
@ -494,10 +503,10 @@ lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_1_0_1 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -515,10 +524,10 @@ lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_1_1_0 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -536,12 +545,12 @@ lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_2_0_1 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) (-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by + (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -558,12 +567,12 @@ lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_2_1_0 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) (-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by + (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -580,13 +589,12 @@ lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_3_0_0 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) + (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -603,12 +611,12 @@ lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl
funext k funext k
fin_cases k <;> rfl fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl lemma pauliMatrix_contr_lower_3_1_1 :
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1))).prod {(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + (-1 : ) •
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand] rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg,
@ -656,8 +664,10 @@ lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor
/- Replacing the contractions. -/ /- Replacing the contractions. -/
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree] rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_2_tree] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| pauliMatrix_contr_down_3_tree] pauliMatrix_contr_down_2_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <|
pauliMatrix_contr_down_3_tree]
/- Simplifying -/ /- Simplifying -/
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul] simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul, simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
@ -686,7 +696,8 @@ lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsT
rfl rfl
lemma pauliMatrix_contract_pauliMatrix_aux : lemma pauliMatrix_contract_pauliMatrix_aux :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
= ((tensorNode = ((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
@ -701,57 +712,89 @@ lemma pauliMatrix_contract_pauliMatrix_aux :
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul I (tensorNode ((TensorTree.smul I (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) + ((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add I •
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-I) (tensorNode ((TensorTree.smul (-I) (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + ((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-1) (tensorNode ((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
(-1 : ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add (-1 : ) •
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
(tensorNode (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
(-1 : ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree] rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree]
/- Moving the prod through additions. -/ /- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _] rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/ /- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
/- Moving contraction through addition. -/ /- Moving contraction through addition. -/
rw [contr_add] rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/ /- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
/- Replacing the contractions. -/ /- Replacing the contractions. -/
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0] rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_1_1] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1] pauliMatrix_contr_lower_0_1_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_0_1] eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_1_0] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0] smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_1_1] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_2_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor
<| pauliMatrix_contr_lower_2_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <|
eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_3_1_1]
lemma pauliMatrix_contract_pauliMatrix : lemma pauliMatrix_contract_pauliMatrix :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor = {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) - 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
@ -762,7 +805,7 @@ lemma pauliMatrix_contract_pauliMatrix :
neg_mul, _root_.neg_neg] neg_mul, _root_.neg_neg]
ring_nf ring_nf
rw [Complex.I_sq] rw [Complex.I_sq]
simp only [ neg_smul, one_smul, _root_.neg_neg] simp only [neg_smul, one_smul, _root_.neg_neg]
abel abel
end Fermion end Fermion

View file

@ -207,6 +207,8 @@ def discreteSumEquiv {X Y : OverColor C} (i : X.left ⊕ Y.left) :
| Sum.inl _ => LinearEquiv.refl _ _ | Sum.inl _ => LinearEquiv.refl _ _
| Sum.inr _ => LinearEquiv.refl _ _ | Sum.inr _ => LinearEquiv.refl _ _
/-- An equivalence used in the lemma of `μ_tmul_tprod_mk`. Identical to `μModEquiv`
except with arguments based on maps instead of elements of `OverColor C`. -/
def discreteSumEquiv' {X Y : Type} {cX : X → C} {cY : Y → C} (i : X ⊕ Y) : def discreteSumEquiv' {X Y : Type} {cX : X → C} {cY : Y → C} (i : X ⊕ Y) :
Sum.elim (fun i => F.obj (Discrete.mk (cX i))) Sum.elim (fun i => F.obj (Discrete.mk (cX i)))
(fun i => F.obj (Discrete.mk (cY i))) i ≃ₗ[k] F.obj (Discrete.mk ((Sum.elim cX cY) i)) := (fun i => F.obj (Discrete.mk (cY i))) i ≃ₗ[k] F.obj (Discrete.mk ((Sum.elim cX cY) i)) :=
@ -271,7 +273,8 @@ lemma μ_tmul_tprod {X Y : OverColor C} (p : (i : X.left) → F.obj (Discrete.mk
lemma μ_tmul_tprod_mk {X Y : Type} {cX : X → C} {cY : Y → C} lemma μ_tmul_tprod_mk {X Y : Type} {cX : X → C} {cY : Y → C}
(p : (i : X) → F.obj (Discrete.mk <| cX i)) (p : (i : X) → F.obj (Discrete.mk <| cX i))
(q : (i : Y) → (F.obj <| Discrete.mk (cY i))) : (q : (i : Y) → (F.obj <| Discrete.mk (cY i))) :
(μ F (OverColor.mk cX) (OverColor.mk cY)).hom.hom (PiTensorProduct.tprod k p ⊗ₜ[k] PiTensorProduct.tprod k q) (μ F (OverColor.mk cX) (OverColor.mk cY)).hom.hom
(PiTensorProduct.tprod k p ⊗ₜ[k] PiTensorProduct.tprod k q)
= (PiTensorProduct.tprod k) fun i => = (PiTensorProduct.tprod k) fun i =>
discreteSumEquiv' F i (HepLean.PiTensorProduct.elimPureTensor p q i) := by discreteSumEquiv' F i (HepLean.PiTensorProduct.elimPureTensor p q i) := by
let q' : (i : (OverColor.mk cY).left) → (F.obj <| Discrete.mk ((OverColor.mk cY).hom i)) := q let q' : (i : (OverColor.mk cY).left) → (F.obj <| Discrete.mk ((OverColor.mk cY).hom i)) := q

View file

@ -152,8 +152,11 @@ def getNoIndicesExact (stx : Syntax) : TermElabM := do
| Expr.app _ (Expr.app _ (Expr.app _ c)) => | Expr.app _ (Expr.app _ (Expr.app _ c)) =>
let typeC ← inferType c let typeC ← inferType c
match typeC with match typeC with
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal n))) _)) _ _ => | Expr.forallE _ (Expr.app _ a) _ _ =>
return n let a' ← whnf a
match a' with
| Expr.lit (Literal.natVal n) => return n
|_ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
| _ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). " | _ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
| _ => return 1 | _ => return 1
| k => return k | k => return k
@ -248,11 +251,7 @@ def termNodeSyntax (T : Term) : TermElabM Term := do
| _ => | _ =>
match type with match type with
| Expr.app _ (Expr.app _ (Expr.app _ c)) => | Expr.app _ (Expr.app _ (Expr.app _ c)) =>
let typeC ← inferType c
match typeC with
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal _))) _)) _ _ =>
return Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T] return Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
| _ => throwError "Could not create terminal node syntax (termNodeSyntax). "
| _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T] | _ => return Syntax.mkApp (mkIdent ``TensorTree.vecNode) #[T]
/-- Adjusts a list `List ` by subtracting from each natrual number the number /-- Adjusts a list `List ` by subtracting from each natrual number the number
@ -547,5 +546,14 @@ elab_rules (kind:=tensorExprSyntax) : term
| `(term| {$e:tensorExpr}ᵀ) => do | `(term| {$e:tensorExpr}ᵀ) => do
let tensorTree ← elaborateTensorNode e let tensorTree ← elaborateTensorNode e
return tensorTree return tensorTree
/-!
## Test cases
-/
variable {S : TensorSpecies} {c : Fin (Nat.succ (Nat.succ 0)) → S.C} {t : S.F.obj (OverColor.mk c)}
/-
#check {t | α β}ᵀ
-/
end TensorTree end TensorTree

View file

@ -52,6 +52,14 @@ def doubleSpaceLinter : HepLeanTextLinter := fun lines ↦ Id.run do
else none) else none)
errors.toArray errors.toArray
def longLineLinter : HepLeanTextLinter := fun lines ↦ Id.run do
let enumLines := (lines.toList.enumFrom 1)
let errors := enumLines.filterMap (fun (lno, l) ↦
if l.length > 100 ∧ ¬ String.containsSubstr l "http" then
some (s!" Line is too long.", lno, 100)
else none)
errors.toArray
/-- Substring linter. -/ /-- Substring linter. -/
def substringLinter (s : String) : HepLeanTextLinter := fun lines ↦ Id.run do def substringLinter (s : String) : HepLeanTextLinter := fun lines ↦ Id.run do
let enumLines := (lines.toList.enumFrom 1) let enumLines := (lines.toList.enumFrom 1)
@ -93,7 +101,7 @@ def hepLeanLintFile (path : FilePath) : IO (Array HepLeanErrorContext) := do
let lines ← IO.FS.lines path let lines ← IO.FS.lines path
let allOutput := (Array.map (fun lint ↦ let allOutput := (Array.map (fun lint ↦
(Array.map (fun (e, n, c) ↦ HepLeanErrorContext.mk e n c path)) (lint lines))) (Array.map (fun (e, n, c) ↦ HepLeanErrorContext.mk e n c path)) (lint lines)))
#[doubleEmptyLineLinter, doubleSpaceLinter, numInitialSpacesEven, #[doubleEmptyLineLinter, doubleSpaceLinter, numInitialSpacesEven, longLineLinter,
substringLinter ".-/", substringLinter " )", substringLinter ".-/", substringLinter " )",
substringLinter "( ", substringLinter "=by", substringLinter " def ", substringLinter "( ", substringLinter "=by", substringLinter " def ",
substringLinter "/-- We ", substringLinter "[ ", substringLinter " ]", substringLinter " ," substringLinter "/-- We ", substringLinter "[ ", substringLinter " ]", substringLinter " ,"