feat: Add elab for prod of tensor in index notation

This commit is contained in:
jstoobysmith 2024-10-08 11:50:27 +00:00
parent 5a34238499
commit 1f3a0dd2b6

View file

@ -20,6 +20,7 @@ open Lean.Meta
open Lean.Elab
open Lean.Elab.Term
open Lean Meta Elab Tactic
open IndexNotation
/-!
@ -93,9 +94,15 @@ syntax term "|" (ppSpace indexExpr)* : tensorExpr
/-- The syntax for tensor prod two tensor nodes. -/
syntax tensorExpr "⊗" tensorExpr : tensorExpr
/-- The syntax for tensor addition. -/
syntax tensorExpr "+" tensorExpr : tensorExpr
/-- Allowing brackets to be used in a tensor expression. -/
syntax "(" tensorExpr ")" : tensorExpr
namespace TensorNode
/-!
## For tensor nodes.
@ -104,12 +111,14 @@ The operations are done in the following order:
- evaluation.
- dualization.
- contraction.
We also want to ensure the number of indices is correct.
-/
namespace TensorNode
/-- The indices of a tensor node. Before contraction, dualisation, and evaluation. -/
partial def getIndicesNode (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
partial def getIndices (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
match stx with
| `(tensorExpr| $_:term | $[$args]*) => do
let indices ← args.toList.mapM fun arg => do
@ -119,9 +128,25 @@ partial def getIndicesNode (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)
| _ =>
throwError "Unsupported tensor expression syntax in getIndicesNode: {stx}"
/-- Uses the structure of the tensor to get the number of indices. -/
def getNoIndicesExact (stx : Syntax) : TermElabM := do
let expr ← elabTerm stx none
let type ← inferType expr
match type with
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
let typeC ← inferType c
match typeC with
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal n))) _)) _ _ =>
return n
| _ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
| _ =>
throwError "Could not extract number of indices from tensor (getNoIndicesExact)."
/-- The positions in getIndicesNode which get evaluated, and the value they take. -/
partial def getEvalPos (stx : Syntax) : TermElabM (List ( × )) := do
let ind ← getIndicesNode stx
let ind ← getIndices stx
let indEnum := ind.enum
let evals := indEnum.filter (fun x => indexExprIsNum x.2)
let evals2 ← (evals.mapM (fun x => indexToNum x.2))
@ -134,7 +159,7 @@ def evalSyntax (l : List ( × )) (T : Term) : Term :=
/-- The positions in getIndicesNode which get dualized. -/
partial def getDualPos (stx : Syntax) : TermElabM (List ) := do
let ind ← getIndicesNode stx
let ind ← getIndices stx
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
let indEnum := indFilt.enum
let duals := indEnum.filter (fun x => indexToDual x.2)
@ -147,7 +172,7 @@ def dualSyntax (l : List ) (T : Term) : Term :=
/-- The pairs of positions in getIndicesNode which get contracted. -/
partial def getContrPos (stx : Syntax) : TermElabM (List ( × )) := do
let ind ← getIndicesNode stx
let ind ← getIndices stx
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
let indEnum := indFilt.enum
let bind := List.bind indEnum (fun a => indEnum.map (fun b => (a, b)))
@ -158,7 +183,7 @@ partial def getContrPos (stx : Syntax) : TermElabM (List ( × )) := do
/-- The list of indices after contraction. -/
def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
let ind ← getIndicesNode stx
let ind ← getIndices stx
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
return ind.filter (fun x => indFilt.count x ≤ 1)
@ -167,19 +192,87 @@ def contrSyntax (l : List ( × )) (T : Term) : Term :=
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
/-- An elaborator for tensor nodes. This is to be generalized. -/
def elaborateTensorNode (stx : Syntax) : TermElabM Expr := do
def syntaxFull (stx : Syntax) : TermElabM Term := do
match stx with
| `(tensorExpr| $T:term | $[$args]*) => do
noIndexCheck T
let tensorNodeSyntax := Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
let evalSyntax := evalSyntax (← getEvalPos stx) tensorNodeSyntax
let dualSyntax := dualSyntax (← getDualPos stx) evalSyntax
let contrSyntax := contrSyntax (← getContrPos stx) dualSyntax
let tensorExpr ← elabTerm contrSyntax none
return tensorExpr
return contrSyntax
| _ =>
throwError "Unsupported tensor expression syntax in elaborateTensorNode: {stx}"
end TensorNode
namespace ProdNode
/-!
## For product nodes.
For a product node we can take the tensor product, and then contract the indices.
-/
partial def getIndices (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
match stx with
| `(tensorExpr| $_:term | $[$args]*) => do
return (← TensorNode.withoutContr stx)
| `(tensorExpr| $a:tensorExpr ⊗ $b:tensorExpr) => do
let indicesA ← getIndices a
let indicesB ← getIndices b
return indicesA ++ indicesB
| `(tensorExpr| ($a:tensorExpr)) => do
return (← getIndices a)
| _ =>
throwError "Unsupported tensor expression syntax in getIndicesProd: {stx}"
/-- The pairs of positions in getIndicesNode which get contracted. -/
partial def getContrPos (stx : Syntax) : TermElabM (List ( × )) := do
let ind ← getIndices stx
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
let indEnum := indFilt.enum
let bind := List.bind indEnum (fun a => indEnum.map (fun b => (a, b)))
let filt ← bind.filterMapM (fun x => indexPosEq x.1 x.2)
if ¬ ((filt.map Prod.fst).Nodup ∧ (filt.map Prod.snd).Nodup) then
throwError "To many contractions"
return filt
/-- The list of indices after contraction. -/
def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
let ind ← getIndices stx
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
return ind.filter (fun x => indFilt.count x ≤ 1)
/-- For each element of `l : List ( × )` applies `TensorTree.contr` to the given term. -/
def contrSyntax (l : List ( × )) (T : Term) : Term :=
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
def prodSyntax (T1 T2 : Term) : Term :=
Syntax.mkApp (mkIdent ``TensorTree.prod) #[T1, T2]
partial def syntaxFull (stx : Syntax) : TermElabM Term := do
match stx with
| `(tensorExpr| $_:term | $[$args]*) => TensorNode.syntaxFull stx
| `(tensorExpr| $a:tensorExpr ⊗ $b:tensorExpr) => do
let prodSyntax := prodSyntax (← syntaxFull a) (← syntaxFull b)
let contrSyntax := contrSyntax (← getContrPos stx) prodSyntax
return contrSyntax
| `(tensorExpr| ($a:tensorExpr)) => do
return (← syntaxFull a)
| _ =>
throwError "Unsupported tensor expression syntax in elaborateTensorNode: {stx}"
/-- An elaborator for tensor nodes. This is to be generalized. -/
def elaborateTensorNode (stx : Syntax) : TermElabM Expr := do
let tensorExpr ← elabTerm (← syntaxFull stx) none
return tensorExpr
/-- Syntax turning a tensor expression into a term. -/
syntax (name := tensorExprSyntax) "{" tensorExpr "}ᵀ" : term
@ -188,4 +281,14 @@ elab_rules (kind:=tensorExprSyntax) : term
let tensorTree ← elaborateTensorNode e
return tensorTree
end TensorNode
variable {S : TensorStruct} {c4 : Fin 4 → S.C} (T4 : S.F.obj (OverColor.mk c4))
{c5 : Fin 5 → S.C} (T5 : S.F.obj (OverColor.mk c5))
example : {T4 | i j}ᵀ = TensorTree.tensorNode T4 := by rfl
#check {T4 | i j l ⊗ T5 | i j k }ᵀ
#check {(T4 | i j l ⊗ T5 | i j k) ⊗ T5 | i1 i2 i3}ᵀ
end ProdNode