refactor: Lint text
This commit is contained in:
parent
855dc5146d
commit
1f3ba14462
12 changed files with 168 additions and 127 deletions
|
@ -30,15 +30,14 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))).hom
|
||||
:= by
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))).hom := by
|
||||
have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom
|
||||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
|
||||
erw [← CategoryTheory.Iso.eq_comp_inv]
|
||||
rw [CategoryTheory.Category.assoc]
|
||||
erw [← CategoryTheory.Iso.inv_comp_eq]
|
||||
|
@ -85,7 +84,8 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
extractOne_homToEquiv, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom,
|
||||
Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, Discrete.functor_obj_eq_as,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
|
||||
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y =
|
||||
((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
|
@ -97,12 +97,14 @@ lemma contrIso_comm_aux_1 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫
|
||||
(S.F.map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm
|
||||
((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom
|
||||
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom := by
|
||||
ext X
|
||||
change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _
|
||||
change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
erw [extractTwo_finExtractTwo]
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Functor.map_comp, Action.comp_hom,
|
||||
|
@ -140,8 +142,9 @@ lemma contrIso_comm_aux_3 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
(S.F.map (extractTwo i j σ)).hom := by
|
||||
change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _
|
||||
have h1 : (S.F.map (extractTwoAux i j σ)) ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom) =
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom) ≫ (S.F.map (extractTwo i j σ)) := by
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom) ≫
|
||||
(S.F.map (extractTwo i j σ)) := by
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
apply congrArg
|
||||
rfl
|
||||
|
@ -159,8 +162,9 @@ lemma contrIso_comm_aux_5 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
|
||||
= ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom ⊗
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom)
|
||||
≫ (S.contrIsoComm σ).hom := by
|
||||
erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue