feat: General construction of tensors
This commit is contained in:
parent
0f4092e0ec
commit
1f51e718f2
1 changed files with 369 additions and 9 deletions
|
@ -34,7 +34,11 @@ open TensorProduct
|
|||
|
||||
variable {R : Type} [CommSemiring R]
|
||||
|
||||
/-- An initial structure specifying a tensor system (e.g. a system in which you can
|
||||
define real Lorentz tensors). -/
|
||||
structure PreTensorStructure (R : Type) [CommSemiring R] where
|
||||
/-- The allowed colors of indices.
|
||||
For example for a real Lorentz tensor these are `{up, down}`. -/
|
||||
Color : Type
|
||||
ColorModule : Color → Type
|
||||
τ : Color → Color
|
||||
|
@ -48,9 +52,10 @@ namespace PreTensorStructure
|
|||
|
||||
variable (𝓣 : PreTensorStructure R)
|
||||
|
||||
variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
|
||||
{c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||||
variable {d : ℕ} {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
|
||||
{c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color}
|
||||
{bw : W → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||||
|
||||
instance : AddCommMonoid (𝓣.ColorModule μ) := 𝓣.colorModule_addCommMonoid μ
|
||||
|
||||
|
@ -79,6 +84,27 @@ def colorModuleCast (h : μ = ν) : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.ColorModu
|
|||
subst h
|
||||
rfl
|
||||
|
||||
lemma tensorProd_piTensorProd_ext {M : Type} [AddCommMonoid M] [Module R M] {f g : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d →ₗ[R] M}
|
||||
(h : ∀ p q, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
|
||||
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)) : f = g := by
|
||||
apply TensorProduct.ext'
|
||||
refine fun x ↦
|
||||
PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx hy y
|
||||
simp [map_add, add_tmul, hx, hy])
|
||||
intro rx fx
|
||||
refine fun y ↦
|
||||
PiTensorProduct.induction_on' y ?_ (by
|
||||
intro a b hx hy
|
||||
simp at hx hy
|
||||
simp [map_add, tmul_add, hx, hy])
|
||||
intro ry fy
|
||||
simp
|
||||
apply congrArg
|
||||
simp [TensorProduct.smul_tmul]
|
||||
apply congrArg
|
||||
exact h fx fy
|
||||
|
||||
/-!
|
||||
|
||||
## Mapping isomorphisms
|
||||
|
@ -170,6 +196,259 @@ lemma mapIso_tprod {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (
|
|||
|
||||
/-!
|
||||
|
||||
## Pure tensors
|
||||
|
||||
This section is needed since: `PiTensorProduct.tmulEquiv` is not defined for dependent types.
|
||||
Hence we need to construct a version of it here.
|
||||
|
||||
-/
|
||||
|
||||
abbrev PureTensor (c : X → 𝓣.Color) := (x : X) → 𝓣.ColorModule (c x)
|
||||
|
||||
def elimPureTensor (p : 𝓣.PureTensor c) (q : 𝓣.PureTensor d) : 𝓣.PureTensor (Sum.elim c d) :=
|
||||
fun x =>
|
||||
match x with
|
||||
| Sum.inl x => p x
|
||||
| Sum.inr x => q x
|
||||
|
||||
@[simp]
|
||||
lemma elimPureTensor_update_right (p : 𝓣.PureTensor c) (q : 𝓣.PureTensor d)
|
||||
(y : Y) (r : 𝓣.ColorModule (d y)) : 𝓣.elimPureTensor p (Function.update q y r) =
|
||||
Function.update (𝓣.elimPureTensor p q) (Sum.inr y) r := by
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x =>
|
||||
change Function.update q y r x = _
|
||||
simp only [Function.update, Sum.inr.injEq, Sum.elim_inr]
|
||||
split_ifs
|
||||
rename_i h
|
||||
subst h
|
||||
simp_all only
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma elimPureTensor_update_left (p : 𝓣.PureTensor c) (q : 𝓣.PureTensor d)
|
||||
(x : X) (r : 𝓣.ColorModule (c x)) : 𝓣.elimPureTensor (Function.update p x r) q =
|
||||
Function.update (𝓣.elimPureTensor p q) (Sum.inl x) r := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inl y =>
|
||||
change (Function.update p x r) y = _
|
||||
simp only [Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||||
split_ifs
|
||||
rename_i h
|
||||
subst h
|
||||
simp_all only
|
||||
rfl
|
||||
| Sum.inr y => rfl
|
||||
|
||||
|
||||
def inlPureTensor (p : 𝓣.PureTensor (Sum.elim c d)) : 𝓣.PureTensor c := fun xy => p (Sum.inl xy)
|
||||
|
||||
def inrPureTensor (p : 𝓣.PureTensor (Sum.elim c d)) : 𝓣.PureTensor d := fun xy => p (Sum.inr xy)
|
||||
|
||||
@[simp]
|
||||
lemma inlPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim c d)) (x : X)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim c d (Sum.inl x))) :
|
||||
𝓣.inlPureTensor (Function.update f (Sum.inl x) v1) =Function.update (𝓣.inlPureTensor f) x v1 := by
|
||||
funext y
|
||||
simp [inlPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||||
split
|
||||
next h =>
|
||||
subst h
|
||||
simp_all only
|
||||
next h => simp_all only
|
||||
|
||||
@[simp]
|
||||
lemma inrPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim c d)) (x : X)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim c d (Sum.inl x))) :
|
||||
𝓣.inrPureTensor (Function.update f (Sum.inl x) v1) = (𝓣.inrPureTensor f) := by
|
||||
funext x
|
||||
simp [inrPureTensor, Function.update]
|
||||
|
||||
@[simp]
|
||||
lemma inrPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim c d)) (y : Y)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim c d (Sum.inr y))) :
|
||||
𝓣.inrPureTensor (Function.update f (Sum.inr y) v1) =Function.update (𝓣.inrPureTensor f) y v1 := by
|
||||
funext y
|
||||
simp [inrPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||||
split
|
||||
next h =>
|
||||
subst h
|
||||
simp_all only
|
||||
next h => simp_all only
|
||||
|
||||
@[simp]
|
||||
lemma inlPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim c d)) (y : Y)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim c d (Sum.inr y))) :
|
||||
𝓣.inlPureTensor (Function.update f (Sum.inr y) v1) = (𝓣.inlPureTensor f) := by
|
||||
funext x
|
||||
simp [inlPureTensor, Function.update]
|
||||
|
||||
def elimPureTensorMulLin : MultilinearMap R (fun i => 𝓣.ColorModule (c i))
|
||||
(MultilinearMap R (fun x => 𝓣.ColorModule (d x)) (𝓣.Tensor (Sum.elim c d))) where
|
||||
toFun p := {
|
||||
toFun := fun q => PiTensorProduct.tprod R (𝓣.elimPureTensor p q)
|
||||
map_add' := fun m x v1 v2 => by
|
||||
simp [Sum.elim_inl, Sum.elim_inr]
|
||||
map_smul' := fun m x r v => by
|
||||
simp [Sum.elim_inl, Sum.elim_inr]}
|
||||
map_add' p x v1 v2 := by
|
||||
apply MultilinearMap.ext
|
||||
intro y
|
||||
simp
|
||||
map_smul' p x r v := by
|
||||
apply MultilinearMap.ext
|
||||
intro y
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
||||
## tensorator
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Replace with dependent type version of `MultilinearMap.domCoprod` when in Mathlib. -/
|
||||
def domCoprod : MultilinearMap R (fun x => 𝓣.ColorModule (Sum.elim c d x)) (𝓣.Tensor c ⊗[R] 𝓣.Tensor d) where
|
||||
toFun f := (PiTensorProduct.tprod R (𝓣.inlPureTensor f)) ⊗ₜ
|
||||
(PiTensorProduct.tprod R (𝓣.inrPureTensor f))
|
||||
map_add' f xy v1 v2:= by
|
||||
match xy with
|
||||
| Sum.inl x => simp [← TensorProduct.add_tmul]
|
||||
| Sum.inr y => simp [← TensorProduct.tmul_add]
|
||||
map_smul' f xy r p := by
|
||||
match xy with
|
||||
| Sum.inl x => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
| Sum.inr y => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
|
||||
def tensoratorSymm : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d →ₗ[R] 𝓣.Tensor (Sum.elim c d) := by
|
||||
refine TensorProduct.lift {
|
||||
toFun := fun a ↦
|
||||
PiTensorProduct.lift <|
|
||||
PiTensorProduct.lift (𝓣.elimPureTensorMulLin) a,
|
||||
map_add' := fun a b ↦ by simp
|
||||
map_smul' := fun r a ↦ by simp}
|
||||
|
||||
/-! TODO: Replace with dependent type version of `PiTensorProduct.tmulEquiv` when in Mathlib. -/
|
||||
def tensorator : 𝓣.Tensor (Sum.elim c d) →ₗ[R] 𝓣.Tensor c ⊗[R] 𝓣.Tensor d :=
|
||||
PiTensorProduct.lift 𝓣.domCoprod
|
||||
|
||||
def tensoratorEquiv (c : X → 𝓣.Color) (d : Y → 𝓣.Color) : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d ≃ₗ[R] 𝓣.Tensor (Sum.elim c d) :=
|
||||
LinearEquiv.ofLinear (𝓣.tensoratorSymm) (𝓣.tensorator)
|
||||
(by
|
||||
apply PiTensorProduct.ext
|
||||
apply MultilinearMap.ext
|
||||
intro p
|
||||
simp [tensorator, tensoratorSymm, domCoprod]
|
||||
change (PiTensorProduct.lift (_)) ((PiTensorProduct.tprod R) _) =
|
||||
LinearMap.id ((PiTensorProduct.tprod R) p)
|
||||
rw [PiTensorProduct.lift.tprod]
|
||||
simp [elimPureTensorMulLin, elimPureTensor]
|
||||
change (PiTensorProduct.tprod R) _ = _
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl)
|
||||
(by
|
||||
apply tensorProd_piTensorProd_ext
|
||||
intro p q
|
||||
simp [tensorator, tensoratorSymm]
|
||||
change (PiTensorProduct.lift 𝓣.domCoprod) ((PiTensorProduct.lift (𝓣.elimPureTensorMulLin p)) ((PiTensorProduct.tprod R) q)) =_
|
||||
rw [PiTensorProduct.lift.tprod]
|
||||
simp [elimPureTensorMulLin]
|
||||
rfl)
|
||||
|
||||
@[simp]
|
||||
lemma tensoratorEquiv_tmul_tprod (p : 𝓣.PureTensor c) (q : 𝓣.PureTensor d) :
|
||||
(𝓣.tensoratorEquiv c d) ((PiTensorProduct.tprod R) p ⊗ₜ[R] (PiTensorProduct.tprod R) q) =
|
||||
(PiTensorProduct.tprod R) (𝓣.elimPureTensor p q) := by
|
||||
simp [tensoratorEquiv, tensorator, tensoratorSymm, domCoprod]
|
||||
change (PiTensorProduct.lift (𝓣.elimPureTensorMulLin p)) ((PiTensorProduct.tprod R) q) = _
|
||||
rw [PiTensorProduct.lift.tprod]
|
||||
simp [elimPureTensorMulLin]
|
||||
|
||||
lemma tensoratorEquiv_mapIso_cond {e : X ≃ Y} {e' : Z ≃ Y} {e'' : W ≃ X}
|
||||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = d ∘ e') (h'' : bW = c ∘ e'') :
|
||||
Sum.elim bW b = Sum.elim c d ∘ ⇑(e''.sumCongr e') := by
|
||||
subst h h' h''
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
@[simp]
|
||||
lemma tensoratorEquiv_mapIso (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
|
||||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = d ∘ e') (h'' : bW = c ∘ e'') :
|
||||
(TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ (𝓣.tensoratorEquiv c d)
|
||||
= (𝓣.tensoratorEquiv bW b)
|
||||
≪≫ₗ (𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'' )) := by
|
||||
apply LinearEquiv.toLinearMap_inj.mp
|
||||
apply tensorProd_piTensorProd_ext
|
||||
intro p q
|
||||
simp
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
@[simp]
|
||||
lemma tensoratorEquiv_mapIso_apply (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
|
||||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = d ∘ e') (h'' : bW = c ∘ e'')
|
||||
(x : 𝓣.Tensor bW ⊗[R] 𝓣.Tensor b) :
|
||||
(𝓣.tensoratorEquiv c d) ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) x) =
|
||||
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'' )) ((𝓣.tensoratorEquiv bW b) x) := by
|
||||
trans ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ (𝓣.tensoratorEquiv c d)) x
|
||||
rfl
|
||||
rw [tensoratorEquiv_mapIso]
|
||||
rfl
|
||||
exact e
|
||||
exact h
|
||||
|
||||
lemma tensoratorEquiv_mapIso_tmul (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
|
||||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = d ∘ e') (h'' : bW = c ∘ e'')
|
||||
(x : 𝓣.Tensor bW) (y : 𝓣.Tensor b) :
|
||||
(𝓣.tensoratorEquiv c d) ((𝓣.mapIso e'' h'' x) ⊗ₜ[R] (𝓣.mapIso e' h' y)) =
|
||||
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'' )) ((𝓣.tensoratorEquiv bW b) (x ⊗ₜ y)) := by
|
||||
rw [← tensoratorEquiv_mapIso_apply]
|
||||
rfl
|
||||
exact e
|
||||
exact h
|
||||
|
||||
/-!
|
||||
|
||||
## Splitting tensors into tensor products
|
||||
|
||||
-/
|
||||
|
||||
def decompEmbedSet (f : Y ↪ X) :
|
||||
X ≃ {x // x ∈ (Finset.image f Finset.univ)ᶜ} ⊕ Y :=
|
||||
(Equiv.Set.sumCompl (Set.range ⇑f)).symm.trans <|
|
||||
(Equiv.sumComm _ _).trans <|
|
||||
Equiv.sumCongr ((Equiv.subtypeEquivRight (by simp))) <|
|
||||
(Function.Embedding.toEquivRange f).symm
|
||||
|
||||
def decompEmbedColorLeft (c : X → 𝓣.Color) (f : Y ↪ X) : {x // x ∈ (Finset.image f Finset.univ)ᶜ} → 𝓣.Color :=
|
||||
(c ∘ (decompEmbedSet f).symm) ∘ Sum.inl
|
||||
|
||||
def decompEmbedColorRight (c : X → 𝓣.Color) (f : Y ↪ X) : Y → 𝓣.Color :=
|
||||
(c ∘ (decompEmbedSet f).symm) ∘ Sum.inr
|
||||
|
||||
lemma decompEmbed_cond (c : X → 𝓣.Color) (f : Y ↪ X) : c =
|
||||
(Sum.elim (𝓣.decompEmbedColorLeft c f) (𝓣.decompEmbedColorRight c f)) ∘ decompEmbedSet f := by
|
||||
simpa [decompEmbedColorLeft, decompEmbedColorRight] using (Equiv.comp_symm_eq _ _ _).mp rfl
|
||||
|
||||
/-- Decomposes a tensor into a tensor product based on an embedding. -/
|
||||
def decompEmbed (f : Y ↪ X) :
|
||||
𝓣.Tensor c ≃ₗ[R] 𝓣.Tensor (𝓣.decompEmbedColorLeft c f) ⊗[R] 𝓣.Tensor (c ∘ f) :=
|
||||
(𝓣.mapIso (decompEmbedSet f) (𝓣.decompEmbed_cond c f)) ≪≫ₗ
|
||||
(𝓣.tensoratorEquiv (𝓣.decompEmbedColorLeft c f) (𝓣.decompEmbedColorRight c f)).symm
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Contraction
|
||||
|
||||
-/
|
||||
|
@ -191,7 +470,6 @@ lemma mkPiAlgebra_equiv (e : X ≃ Y) :
|
|||
MultilinearMap.mkPiAlgebra_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
|
||||
PiTensorProduct.reindex_tprod, Equiv.prod_comp]
|
||||
|
||||
|
||||
def contrAll' : 𝓣.Tensor c ⊗[R] 𝓣.Tensor (𝓣.τ ∘ c) →ₗ[R] R :=
|
||||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) ∘ₗ
|
||||
(PiTensorProduct.map (fun x => 𝓣.contrDual (c x))) ∘ₗ
|
||||
|
@ -377,7 +655,6 @@ def rep : Representation R G (𝓣.Tensor c) where
|
|||
|
||||
local infixl:78 " • " => 𝓣.rep
|
||||
|
||||
@[simp]
|
||||
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
|
||||
(𝓣.repColorModule ν g) ((𝓣.colorModuleCast h) x) = (𝓣.colorModuleCast h) ((𝓣.repColorModule μ g) x) := by
|
||||
subst h
|
||||
|
@ -389,7 +666,7 @@ lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) :
|
|||
(𝓣.colorModuleCast h).toLinearMap ∘ₗ (𝓣.repColorModule μ g) := by
|
||||
apply LinearMap.ext
|
||||
intro x
|
||||
simp
|
||||
simp [repColorModule_colorModuleCast_apply]
|
||||
|
||||
|
||||
@[simp]
|
||||
|
@ -400,7 +677,7 @@ lemma rep_mapIso (e : X ≃ Y) (h : c = d ∘ e) (g : G) :
|
|||
intro x
|
||||
simp
|
||||
erw [mapIso_tprod]
|
||||
simp [rep]
|
||||
simp [rep, repColorModule_colorModuleCast_apply]
|
||||
change (PiTensorProduct.map fun x => (𝓣.repColorModule (d x)) g)
|
||||
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) =
|
||||
(𝓣.mapIso e h) ((PiTensorProduct.map fun x => (𝓣.repColorModule (c x)) g) ((PiTensorProduct.tprod R) x))
|
||||
|
@ -409,20 +686,103 @@ lemma rep_mapIso (e : X ≃ Y) (h : c = d ∘ e) (g : G) :
|
|||
apply congrArg
|
||||
funext i
|
||||
subst h
|
||||
simp
|
||||
simp [repColorModule_colorModuleCast_apply]
|
||||
|
||||
@[simp]
|
||||
lemma rep_mapIso_apply (e : X ≃ Y) (h : c = d ∘ e) (g : G) (x : 𝓣.Tensor c) :
|
||||
(𝓣.rep g) ((𝓣.mapIso e h) x) = (𝓣.mapIso e h) ((𝓣.rep g) x) := by
|
||||
g • (𝓣.mapIso e h x) = (𝓣.mapIso e h) (g • x) := by
|
||||
trans ((𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap) x
|
||||
rfl
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma rep_tprod (g : G) (f : (i : X) → 𝓣.ColorModule (c i)) :
|
||||
g • (PiTensorProduct.tprod R f) = PiTensorProduct.tprod R (fun x =>
|
||||
𝓣.repColorModule (c x) g (f x)) := by
|
||||
simp [rep]
|
||||
change (PiTensorProduct.map fun x => (𝓣.repColorModule (c x)) g) ((PiTensorProduct.tprod R) f) = _
|
||||
rw [PiTensorProduct.map_tprod]
|
||||
|
||||
/-!
|
||||
|
||||
## Group acting on tensor products
|
||||
|
||||
-/
|
||||
|
||||
lemma rep_tensoratorEquiv (g : G) :
|
||||
(𝓣.tensoratorEquiv c d) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.rep g ∘ₗ
|
||||
(𝓣.tensoratorEquiv c d).toLinearMap := by
|
||||
apply tensorProd_piTensorProd_ext
|
||||
intro p q
|
||||
simp
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
lemma rep_tensoratorEquiv_apply (g : G) (x : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d) :
|
||||
(𝓣.tensoratorEquiv c d) ((TensorProduct.map (𝓣.rep g) (𝓣.rep g)) x) = (𝓣.rep g) ((𝓣.tensoratorEquiv c d) x) := by
|
||||
trans ((𝓣.tensoratorEquiv c d) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x
|
||||
rfl
|
||||
rw [rep_tensoratorEquiv]
|
||||
rfl
|
||||
|
||||
lemma rep_tensoratorEquiv_tmul (g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) :
|
||||
(𝓣.tensoratorEquiv c d) ((g • x) ⊗ₜ[R] (g • y)) = g • ((𝓣.tensoratorEquiv c d) (x ⊗ₜ[R] y)) := by
|
||||
nth_rewrite 1 [← rep_tensoratorEquiv_apply]
|
||||
rfl
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Group acting on contraction
|
||||
|
||||
-/
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_rep {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) :
|
||||
𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by
|
||||
apply TensorProduct.ext'
|
||||
refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx hy y
|
||||
simp [map_add, add_tmul, hx, hy])
|
||||
intro rx fx
|
||||
refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by
|
||||
intro a b hx hy
|
||||
simp at hx hy
|
||||
simp [map_add, tmul_add, hx, hy])
|
||||
intro ry fy
|
||||
simp [contrAll, TensorProduct.smul_tmul]
|
||||
apply congrArg
|
||||
apply congrArg
|
||||
simp [contrAll']
|
||||
apply congrArg
|
||||
simp [pairProd]
|
||||
change (PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _) =
|
||||
(PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _)
|
||||
rw [PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map_tprod,
|
||||
PiTensorProduct.map_tprod]
|
||||
simp
|
||||
apply congrArg
|
||||
funext x
|
||||
rw [← repColorModule_colorModuleCast_apply]
|
||||
nth_rewrite 2 [← 𝓣.contrDual_inv (c x) g]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||||
(g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) :
|
||||
𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by
|
||||
change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _
|
||||
rw [contrAll_rep]
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||||
(g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) :
|
||||
𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by
|
||||
nth_rewrite 2 [← contrAll_rep_apply]
|
||||
rfl
|
||||
|
||||
end GroupTensorStructure
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue