chore: namechange

This commit is contained in:
jstoobysmith 2024-07-12 10:23:59 -04:00
parent b062bbf08c
commit 1fe51b2e04
4 changed files with 34 additions and 28 deletions

View file

@ -34,7 +34,7 @@ open SpaceTime
/-- The Higgs potential of the form `- μ² * |φ|² + 𝓵 * |φ|⁴`. -/
@[simp]
def potential (μ2 𝓵 : ) (φ : HiggsField) (x : SpaceTime) : :=
def potential (μ2 𝓵 : ) (φ : HiggsField) (x : SpaceTime) : :=
- μ2 * ‖φ‖_H ^ 2 x + 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
/-!
@ -43,7 +43,7 @@ def potential (μ2 𝓵 : ) (φ : HiggsField) (x : SpaceTime) : :=
-/
lemma potential_smooth (μSq lambda : ) (φ : HiggsField) :
lemma potential_smooth (μSq lambda : ) (φ : HiggsField) :
Smooth 𝓘(, SpaceTime) 𝓘(, ) (fun x => φ.potential μSq lambda x) := by
simp only [potential, normSq, neg_mul]
exact (smooth_const.smul φ.normSq_smooth).neg.add
@ -56,7 +56,7 @@ namespace potential
-/
lemma complete_square (μ2 𝓵 : ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
lemma complete_square (μ2 𝓵 : ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
potential μ2 𝓵 φ x = 𝓵 * (‖φ‖_H ^ 2 x - μ2 / (2 * 𝓵)) ^ 2 - μ2 ^ 2 / (4 * 𝓵) := by
simp only [potential]
field_simp
@ -69,7 +69,7 @@ lemma complete_square (μ2 𝓵 : ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : S
-/
/-- The proposition on the coefficents for a potential to be bounded. -/
def IsBounded (μ2 𝓵 : ) : Prop :=
def IsBounded (μ2 𝓵 : ) : Prop :=
∃ c, ∀ Φ x, c ≤ potential μ2 𝓵 Φ x
/-! TODO: Show when 𝓵 < 0, the potential is not bounded. -/
@ -87,19 +87,19 @@ variable (h𝓵 : 0 < 𝓵)
/-- The second term of the potential is non-negative. -/
lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
rw [mul_nonneg_iff]
apply Or.inl
simp_all only [normSq, gt_iff_lt, mul_nonneg_iff_of_pos_left, ge_iff_le, norm_nonneg, pow_nonneg,
and_self]
lemma as_quad (μ2 𝓵 : ) (φ : HiggsField) (x : SpaceTime) :
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2 ) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2 ) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
simp only [normSq, neg_mul, potential, neg_add_rev, neg_neg]
ring
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
lemma discrim_nonneg (φ : HiggsField) (x : SpaceTime) :
lemma discrim_nonneg (φ : HiggsField) (x : SpaceTime) :
0 ≤ discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) := by
have h1 := as_quad μ2 𝓵 φ x
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
@ -111,7 +111,7 @@ lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
(hV : potential μ2 𝓵 φ x = 0) : φ x = 0 ‖φ‖_H ^ 2 x = μ2 / 𝓵 := by
have h1 := as_quad μ2 𝓵 φ x
rw [hV] at h1
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
linear_combination h1
simp at h2
cases' h2 with h2 h2
@ -122,12 +122,12 @@ lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
linear_combination h2
lemma eq_zero_at_of_μSq_nonpos {μ2 : } (hμ2 : μ2 ≤ 0)
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
cases' (eq_zero_at μ2 h𝓵 φ x hV) with h1 h1
exact h1
by_cases hμSqZ : μ2 = 0
simpa [hμSqZ] using h1
refine ((?_ : ¬ 0 ≤ μ2 / 𝓵) (?_)).elim
refine ((?_ : ¬ 0 ≤ μ2 / 𝓵) (?_)).elim
· simp_all [div_nonneg_iff]
intro h
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμ2 hμSqZ)
@ -135,7 +135,7 @@ lemma eq_zero_at_of_μSq_nonpos {μ2 : } (hμ2 : μ2 ≤ 0)
exact normSq_nonneg φ x
lemma bounded_below (φ : HiggsField) (x : SpaceTime) :
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
have h1 := discrim_nonneg μ2 h𝓵 φ x
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
ring_nf at h1
@ -145,7 +145,7 @@ lemma bounded_below (φ : HiggsField) (x : SpaceTime) :
ring_nf at h2 ⊢
exact h2
lemma bounded_below_of_μSq_nonpos {μ2 : }
lemma bounded_below_of_μSq_nonpos {μ2 : }
(hμSq : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) : 0 ≤ potential μ2 𝓵 φ x := by
refine add_nonneg ?_ (snd_term_nonneg h𝓵 φ x)
field_simp [mul_nonpos_iff]
@ -165,7 +165,7 @@ variable (h𝓵 : 0 < 𝓵)
-/
lemma discrim_eq_zero_of_eq_bound (φ : HiggsField) (x : SpaceTime)
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
rw [discrim, hV]
field_simp
@ -180,36 +180,36 @@ lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
exact ne_of_gt h𝓵
lemma eq_bound_iff (φ : HiggsField) (x : SpaceTime) :
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
Iff.intro (normSq_of_eq_bound μ2 h𝓵 φ x)
(fun h ↦ by
rw [potential, h]
field_simp
ring_nf)
lemma eq_bound_iff_of_μSq_nonpos {μ2 : }
lemma eq_bound_iff_of_μSq_nonpos {μ2 : }
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) :
potential μ2 𝓵 φ x = 0 ↔ φ x = 0 :=
Iff.intro (fun h ↦ eq_zero_at_of_μSq_nonpos h𝓵 hμ2 φ x h)
(fun h ↦ by simp [potential, h])
lemma eq_bound_IsMinOn (φ : HiggsField) (x : SpaceTime)
(hv : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
(hv : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
rw [isMinOn_univ_iff]
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
exact fun (φ', x') ↦ bounded_below μ2 h𝓵 φ' x'
lemma eq_bound_IsMinOn_of_μSq_nonpos {μ2 : }
lemma eq_bound_IsMinOn_of_μSq_nonpos {μ2 : }
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) (hv : potential μ2 𝓵 φ x = 0) :
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
rw [isMinOn_univ_iff]
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
exact fun (φ', x') ↦ bounded_below_of_μSq_nonpos h𝓵 hμ2 φ' x'
lemma bound_reached_of_μSq_nonneg {μ2 : } (hμ2 : 0 ≤ μ2) :
lemma bound_reached_of_μSq_nonneg {μ2 : } (hμ2 : 0 ≤ μ2) :
∃ (φ : HiggsField) (x : SpaceTime),
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) := by
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) := by
use HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0], 0
refine (eq_bound_iff μ2 h𝓵 (HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0]) 0).mpr ?_
simp only [normSq, HiggsVec.toField, ContMDiffSection.coeFn_mk, PiLp.norm_sq_eq_of_L2,
@ -218,7 +218,7 @@ lemma bound_reached_of_μSq_nonneg {μ2 : } (hμ2 : 0 ≤ μ2) :
not_false_eq_true, zero_pow, add_zero]
field_simp [mul_pow]
lemma IsMinOn_iff_of_μSq_nonneg {μ2 : } (hμ2 : 0 ≤ μ2) :
lemma IsMinOn_iff_of_μSq_nonneg {μ2 : } (hμ2 : 0 ≤ μ2) :
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔
‖φ‖_H ^ 2 x = μ2 /(2 * 𝓵) := by
apply Iff.intro <;> rw [← eq_bound_iff μ2 h𝓵 φ]