refactor: Lint
This commit is contained in:
parent
cf0cbb78bb
commit
21bbad1e19
3 changed files with 7 additions and 8 deletions
|
@ -3,11 +3,9 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Contraction
|
||||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.OnlyUniqueDuals
|
||||
import HepLean.SpaceTime.LorentzTensor.Basic
|
||||
import Init.Data.List.Lemmas
|
||||
import HepLean.SpaceTime.LorentzTensor.Contraction
|
||||
/-!
|
||||
|
||||
# Index lists and color
|
||||
|
|
|
@ -7,7 +7,6 @@ import HepLean.SpaceTime.LorentzTensor.IndexNotation.Color
|
|||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.OnlyUniqueDuals
|
||||
import HepLean.SpaceTime.LorentzTensor.Basic
|
||||
import Init.Data.List.Lemmas
|
||||
import HepLean.SpaceTime.LorentzTensor.Contraction
|
||||
/-!
|
||||
|
||||
# Index lists and color
|
||||
|
|
|
@ -4,6 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.ColorIndexList.Basic
|
||||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Contraction
|
||||
import HepLean.SpaceTime.LorentzTensor.Contraction
|
||||
import HepLean.SpaceTime.LorentzTensor.Basic
|
||||
import Init.Data.List.Lemmas
|
||||
/-!
|
||||
|
@ -103,15 +105,15 @@ lemma contr_countP_eq_zero_of_countP (I : Index 𝓒.Color)
|
|||
|
||||
lemma contr_countP (I : Index 𝓒.Color) :
|
||||
l.contr.val.countP (fun J => I.id = J.id) =
|
||||
(l.val.filter (fun J => I.id = J.id)).countP (fun i => l.val.countP (fun j => i.id = j.id) = 1) := by
|
||||
(l.val.filter (fun J => I.id = J.id)).countP
|
||||
(fun i => l.val.countP (fun j => i.id = j.id) = 1) := by
|
||||
simp [contr, contrIndexList]
|
||||
rw [List.countP_filter, List.countP_filter]
|
||||
congr
|
||||
funext J
|
||||
simp
|
||||
exact
|
||||
Bool.and_comm (decide (I.id = J.id))
|
||||
(decide (List.countP (fun j => decide (J.id = j.id)) l.val = 1))
|
||||
simp only [decide_eq_true_eq, Bool.decide_and]
|
||||
exact Bool.and_comm (decide (I.id = J.id))
|
||||
(decide (List.countP (fun j => decide (J.id = j.id)) l.val = 1))
|
||||
|
||||
lemma contr_cons_dual (I : Index 𝓒.Color) (hI1 : l.val.countP (fun J => I.id = J.id) ≤ 1) :
|
||||
l.contr.val.countP (fun J => I.id = J.id) ≤ 1 := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue