feat: Time order for CrAnAlgebra
Also remove StateAlgebra
This commit is contained in:
parent
3abc31af98
commit
21f81a9331
19 changed files with 493 additions and 290 deletions
|
@ -93,27 +93,27 @@ lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
|
|||
normalOrder_ofCrAnList_append_annihilate φ hφ]
|
||||
|
||||
lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
||||
𝓝(crPart (StateAlgebra.ofState φ) * a) =
|
||||
crPart (StateAlgebra.ofState φ) * 𝓝(a) := by
|
||||
𝓝(crPart φ * a) =
|
||||
crPart φ * 𝓝(a) := by
|
||||
match φ with
|
||||
| .inAsymp φ =>
|
||||
rw [crPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
||||
rw [crPart]
|
||||
exact normalOrder_create_mul ⟨States.inAsymp φ, ()⟩ rfl a
|
||||
| .position φ =>
|
||||
rw [crPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
||||
rw [crPart]
|
||||
exact normalOrder_create_mul _ rfl _
|
||||
| .outAsymp φ => simp
|
||||
|
||||
lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
||||
𝓝(a * anPart (StateAlgebra.ofState φ)) =
|
||||
𝓝(a) * anPart (StateAlgebra.ofState φ) := by
|
||||
𝓝(a * anPart φ) =
|
||||
𝓝(a) * anPart φ := by
|
||||
match φ with
|
||||
| .inAsymp φ => simp
|
||||
| .position φ =>
|
||||
rw [anPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
||||
rw [anPart]
|
||||
exact normalOrder_mul_annihilate _ rfl _
|
||||
| .outAsymp φ =>
|
||||
rw [anPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
||||
rw [anPart]
|
||||
refine normalOrder_mul_annihilate _ rfl _
|
||||
|
||||
/-!
|
||||
|
@ -182,9 +182,9 @@ lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
|
|||
exact Or.inr (normalOrder_superCommute_create_annihilate φc φa hφc hφa ..)
|
||||
|
||||
lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝(a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
|
||||
𝓝(a * (crPart φ) * (anPart φ') * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
𝓝(a * (anPart (StateAlgebra.ofState φ')) * (crPart (StateAlgebra.ofState φ)) * b) := by
|
||||
𝓝(a * (anPart φ') * (crPart φ) * b) := by
|
||||
match φ, φ' with
|
||||
| _, .inAsymp φ' => simp
|
||||
| .outAsymp φ, _ => simp
|
||||
|
@ -218,14 +218,14 @@ Using the results from above.
|
|||
-/
|
||||
|
||||
lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝(a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(a * (crPart (StateAlgebra.ofState φ')) *
|
||||
(anPart (StateAlgebra.ofState φ)) * b) := by
|
||||
𝓝(a * (anPart φ) * (crPart φ') * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(a * (crPart φ') *
|
||||
(anPart φ) * b) := by
|
||||
simp [normalOrder_swap_crPart_anPart, smul_smul]
|
||||
|
||||
lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝(a * superCommute
|
||||
(crPart (StateAlgebra.ofState φ)) (anPart (StateAlgebra.ofState φ')) * b) = 0 := by
|
||||
(crPart φ) (anPart φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
| _, .inAsymp φ' => simp
|
||||
| .outAsymp φ', _ => simp
|
||||
|
@ -244,7 +244,7 @@ lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnA
|
|||
|
||||
lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝(a * superCommute
|
||||
(anPart (StateAlgebra.ofState φ)) (crPart (StateAlgebra.ofState φ')) * b) = 0 := by
|
||||
(anPart φ) (crPart φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
| .inAsymp φ', _ => simp
|
||||
| _, .outAsymp φ' => simp
|
||||
|
@ -269,49 +269,49 @@ lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnA
|
|||
|
||||
@[simp]
|
||||
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
|
||||
𝓝(crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
||||
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
|
||||
𝓝(crPart φ * crPart φ') =
|
||||
crPart φ * crPart φ' := by
|
||||
rw [normalOrder_crPart_mul]
|
||||
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
|
||||
conv_lhs => rw [← mul_one (crPart φ')]
|
||||
rw [normalOrder_crPart_mul, normalOrder_one]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
|
||||
𝓝(anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
||||
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
||||
𝓝(anPart φ * anPart φ') =
|
||||
anPart φ * anPart φ' := by
|
||||
rw [normalOrder_mul_anPart]
|
||||
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
|
||||
conv_lhs => rw [← one_mul (anPart φ)]
|
||||
rw [normalOrder_mul_anPart, normalOrder_one]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
|
||||
𝓝(crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
||||
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
||||
𝓝(crPart φ * anPart φ') =
|
||||
crPart φ * anPart φ' := by
|
||||
rw [normalOrder_crPart_mul]
|
||||
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
|
||||
conv_lhs => rw [← one_mul (anPart φ')]
|
||||
rw [normalOrder_mul_anPart, normalOrder_one]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
|
||||
𝓝(anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
||||
𝓝(anPart φ * crPart φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
|
||||
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
|
||||
conv_lhs => rw [← mul_one (1 * (anPart (StateAlgebra.ofState φ) *
|
||||
crPart (StateAlgebra.ofState φ')))]
|
||||
(crPart φ' * anPart φ) := by
|
||||
conv_lhs => rw [← one_mul (anPart φ * crPart φ')]
|
||||
conv_lhs => rw [← mul_one (1 * (anPart φ *
|
||||
crPart φ'))]
|
||||
rw [← mul_assoc, normalOrder_swap_anPart_crPart]
|
||||
simp
|
||||
|
||||
lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
|
||||
𝓝(ofState φ * ofState φ') =
|
||||
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
|
||||
crPart φ * crPart φ' +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
|
||||
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
|
||||
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
||||
(crPart φ' * anPart φ) +
|
||||
crPart φ * anPart φ' +
|
||||
anPart φ * anPart φ' := by
|
||||
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart, mul_add, add_mul, add_mul]
|
||||
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
|
||||
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
|
||||
|
@ -497,9 +497,9 @@ lemma ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.CrAnSta
|
|||
|
||||
lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
|
||||
(φs' : List 𝓕.States) :
|
||||
anPart (StateAlgebra.ofState φ) * 𝓝(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝(ofStateList φs' * anPart (StateAlgebra.ofState φ))
|
||||
+ [anPart (StateAlgebra.ofState φ), 𝓝(ofStateList φs')]ₛca := by
|
||||
anPart φ * 𝓝(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝(ofStateList φs' * anPart φ)
|
||||
+ [anPart φ, 𝓝(ofStateList φs')]ₛca := by
|
||||
rw [normalOrder_mul_anPart]
|
||||
match φ with
|
||||
| .inAsymp φ => simp
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue