feat: Time order for CrAnAlgebra

Also remove StateAlgebra
This commit is contained in:
jstoobysmith 2025-01-27 11:12:48 +00:00
parent 3abc31af98
commit 21f81a9331
19 changed files with 493 additions and 290 deletions

View file

@ -0,0 +1,165 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldSpecification.TimeOrder
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
import HepLean.PerturbationTheory.Koszul.KoszulSign
/-!
# Time Ordering in the CrAnAlgebra
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldStatistic
namespace CrAnAlgebra
noncomputable section
open HepLean.List
/-!
## Time order
-/
/-- Time ordering for the `CrAnAlgebra`. -/
def timeOrder : CrAnAlgebra 𝓕 →ₗ[] CrAnAlgebra 𝓕 :=
Basis.constr ofCrAnListBasis fun φs =>
crAnTimeOrderSign φs • ofCrAnList (crAnTimeOrderList φs)
@[inherit_doc timeOrder]
scoped[FieldSpecification.CrAnAlgebra] notation "𝓣ᶠ(" a ")" => timeOrder a
lemma timeOrder_ofCrAnList (φs : List 𝓕.CrAnStates) :
𝓣ᶠ(ofCrAnList φs) = crAnTimeOrderSign φs • ofCrAnList (crAnTimeOrderList φs) := by
rw [← ofListBasis_eq_ofList]
simp only [timeOrder, Basis.constr_basis]
lemma timeOrder_ofStateList (φs : List 𝓕.States) :
𝓣ᶠ(ofStateList φs) = timeOrderSign φs • ofStateList (timeOrderList φs) := by
conv_lhs =>
rw [ofStateList_sum, map_sum]
enter [2, x]
rw [timeOrder_ofCrAnList]
simp
rw [← Finset.smul_sum]
congr
rw [ofStateList_sum, sum_crAnSections_timeOrder]
rfl
lemma timeOrder_ofStateList_nil : timeOrder (𝓕 := 𝓕) (ofStateList []) = 1 := by
rw [timeOrder_ofStateList]
simp [timeOrderSign, Wick.koszulSign, timeOrderList]
@[simp]
lemma timeOrder_ofStateList_singleton (φ : 𝓕.States) : 𝓣ᶠ(ofStateList [φ]) = ofStateList [φ] := by
simp [timeOrder_ofStateList, timeOrderSign, timeOrderList]
lemma timeOrder_ofState_ofState_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
𝓣ᶠ(ofState φ * ofState ψ) = ofState φ * ofState ψ := by
rw [← ofStateList_singleton, ← ofStateList_singleton, ← ofStateList_append, timeOrder_ofStateList]
simp only [List.singleton_append]
rw [timeOrderSign_pair_ordered h, timeOrderList_pair_ordered h]
simp
lemma timeOrder_ofState_ofState_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
𝓣ᶠ(ofState φ * ofState ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofState ψ * ofState φ := by
rw [← ofStateList_singleton, ← ofStateList_singleton,
← ofStateList_append, timeOrder_ofStateList]
simp only [List.singleton_append, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [timeOrderSign_pair_not_ordered h, timeOrderList_pair_not_ordered h]
simp [← ofStateList_append]
lemma timeOrder_ofState_ofState_not_ordered_eq_timeOrder {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
𝓣ᶠ(ofState φ * ofState ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣ᶠ(ofState ψ * ofState φ) := by
rw [timeOrder_ofState_ofState_not_ordered h]
rw [timeOrder_ofState_ofState_ordered]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
have hx := IsTotal.total (r := timeOrderRel) ψ φ
simp_all
/-- In the state algebra time, ordering obeys `T(φ₀φ₁…φₙ) = s * φᵢ * T(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`
where `φᵢ` is the state
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`. -/
lemma timeOrder_eq_maxTimeField_mul (φ : 𝓕.States) (φs : List 𝓕.States) :
𝓣ᶠ(ofStateList (φ :: φs)) =
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) •
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofStateList (eraseMaxTimeField φ φs)) := by
rw [timeOrder_ofStateList, timeOrderList_eq_maxTimeField_timeOrderList]
rw [ofStateList_cons, timeOrder_ofStateList]
simp only [instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
congr
rw [timerOrderSign_of_eraseMaxTimeField, mul_assoc]
simp
/-- In the state algebra time, ordering obeys `T(φ₀φ₁…φₙ) = s * φᵢ * T(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`
where `φᵢ` is the state
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`.
Here `s` is written using finite sets. -/
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
𝓣ᶠ(ofStateList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
(Finset.filter (fun x =>
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofStateList (eraseMaxTimeField φ φs)) := by
rw [timeOrder_eq_maxTimeField_mul]
congr 3
apply FieldStatistic.ofList_perm
nth_rewrite 1 [← List.finRange_map_get (φ :: φs)]
simp only [List.length_cons, eraseMaxTimeField, insertionSortDropMinPos]
rw [eraseIdx_get, ← List.map_take, ← List.map_map]
refine List.Perm.map (φ :: φs).get ?_
apply (List.perm_ext_iff_of_nodup _ _).mpr
· intro i
simp only [List.length_cons, maxTimeFieldPos, mem_take_finrange, Fin.val_fin_lt, List.mem_map,
Finset.mem_sort, Finset.mem_filter, Finset.mem_univ, true_and, Function.comp_apply]
refine Iff.intro (fun hi => ?_) (fun h => ?_)
· have h2 := (maxTimeFieldPosFin φ φs).2
simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one,
maxTimeFieldPosFin, insertionSortMinPosFin] at h2
use ⟨i, by omega⟩
apply And.intro
· simp only [Fin.succAbove, List.length_cons, Fin.castSucc_mk, maxTimeFieldPosFin,
insertionSortMinPosFin, Nat.succ_eq_add_one, Fin.mk_lt_mk, Fin.val_fin_lt, Fin.succ_mk]
rw [Fin.lt_def]
split
· simp only [Fin.val_fin_lt]
omega
· omega
· simp only [Fin.succAbove, List.length_cons, Fin.castSucc_mk, Fin.succ_mk, Fin.ext_iff,
Fin.coe_cast]
split
· simp
· simp_all [Fin.lt_def]
· obtain ⟨j, h1, h2⟩ := h
subst h2
simp only [Fin.lt_def, Fin.coe_cast]
exact h1
· exact List.Sublist.nodup (List.take_sublist _ _) <|
List.nodup_finRange (φs.length + 1)
· refine List.Nodup.map ?_ ?_
· refine Function.Injective.comp ?hf.hg Fin.succAbove_right_injective
exact Fin.cast_injective (eraseIdx_length (φ :: φs) (insertionSortMinPos timeOrderRel φ φs))
· exact Finset.sort_nodup (fun x1 x2 => x1 ≤ x2)
(Finset.filter (fun x => (maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs)
Finset.univ)
/-!
## Norm-time order
-/
def normTimeOrder : CrAnAlgebra 𝓕 →ₗ[] CrAnAlgebra 𝓕 :=
Basis.constr ofCrAnListBasis fun φs =>
normTimeOrderSign φs • ofCrAnList (normTimeOrderList φs)
end
end CrAnAlgebra
end FieldSpecification