feat: Simple perm identities
This commit is contained in:
parent
2cb219773e
commit
224cc2f195
3 changed files with 19 additions and 3 deletions
|
@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
|
|||
import HepLean.Tensors.Tree.Elab
|
||||
import HepLean.Tensors.ComplexLorentz.Basic
|
||||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||
/-!
|
||||
|
||||
## Lemmas related to complex Lorentz tensors.
|
||||
|
@ -66,7 +67,6 @@ lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ :
|
|||
match i with
|
||||
| (0 : Fin 2) => rfl
|
||||
| (1 : Fin 2) => rfl
|
||||
|
||||
/-
|
||||
lemma coMetric_prod_antiSymm (A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V)
|
||||
(S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V)
|
||||
|
@ -84,7 +84,7 @@ lemma coMetric_prod_antiSymm (A : (Lorentz.complexContr ⊗ Lorentz.complexContr
|
|||
apply congrArg
|
||||
sorry
|
||||
sorry
|
||||
-/
|
||||
-/
|
||||
end Fermion
|
||||
|
||||
end
|
||||
|
|
|
@ -460,7 +460,7 @@ def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (Over
|
|||
-/
|
||||
|
||||
@[simp]
|
||||
lemma tensoreNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
|
||||
lemma tensorNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
|
||||
(tensorNode T).tensor = T := rfl
|
||||
|
||||
@[simp]
|
||||
|
|
|
@ -79,4 +79,20 @@ lemma neg_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|||
(perm σ (neg t)).tensor = (neg (perm σ t)).tensor := by
|
||||
simp only [perm_tensor, neg_tensor, map_neg]
|
||||
|
||||
/-!
|
||||
|
||||
## Basic perm identities
|
||||
|
||||
-/
|
||||
|
||||
/-- Applying two permutations is the same as applying the transitive permutation. -/
|
||||
lemma perm_perm {n : ℕ} {c : Fin n → S.C} {c1 : Fin n → S.C} {c2 : Fin n → S.C}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (σ2 : (OverColor.mk c1) ⟶ (OverColor.mk c2))
|
||||
(t : TensorTree S c) : (perm σ2 (perm σ t)).tensor = (perm (σ ≫ σ2) t).tensor := by
|
||||
simp [perm_tensor]
|
||||
|
||||
/-- Applying the identity permutation is the same as not applying a permutation. -/
|
||||
lemma perm_id (t : TensorTree S c) : (perm (𝟙 (OverColor.mk c)) t).tensor = t.tensor := by
|
||||
simp [perm_tensor]
|
||||
|
||||
end TensorTree
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue