Merge pull request #62 from HEPLean/Feynman_Diagrams

feat: number of loops of a Feynman diagram
This commit is contained in:
Joseph Tooby-Smith 2024-06-19 15:13:23 -04:00 committed by GitHub
commit 23495ea80f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 294 additions and 2 deletions

View file

@ -51,6 +51,7 @@ import HepLean.BeyondTheStandardModel.TwoHDM.Basic
import HepLean.FeynmanDiagrams.Basic
import HepLean.FeynmanDiagrams.Instances.ComplexScalar
import HepLean.FeynmanDiagrams.Instances.Phi4
import HepLean.FeynmanDiagrams.Momentum
import HepLean.FlavorPhysics.CKMMatrix.Basic
import HepLean.FlavorPhysics.CKMMatrix.Invariants
import HepLean.FlavorPhysics.CKMMatrix.PhaseFreedom

View file

@ -204,6 +204,36 @@ instance preimageEdgeMapFintype [IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type}
/-!
## External and internal Vertices
We say a vertex Label is `external` if it has only one half-edge associated with it.
Otherwise, we say it is `internal`.
We will show that for `IsFinitePreFeynmanRule` the condition of been external is decidable.
-/
/-- A vertex is external if it has a single half-edge associated to it. -/
def External {P : PreFeynmanRule} (v : P.VertexLabel) : Prop :=
IsIsomorphic (P.vertexLabelMap v).left (Fin 1)
lemma external_iff_exists_bijection {P : PreFeynmanRule} (v : P.VertexLabel) :
External v ↔ ∃ (κ : (P.vertexLabelMap v).left → Fin 1), Function.Bijective κ := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
obtain ⟨κ, κm1, h1, h2⟩ := h
let f : (P.vertexLabelMap v).left ≅ (Fin 1) := ⟨κ, κm1, h1, h2⟩
exact ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f⟩
obtain ⟨κ, h1⟩ := h
let f : (P.vertexLabelMap v).left ⟶ (Fin 1) := κ
have ft : IsIso f := (isIso_iff_bijective κ).mpr h1
obtain ⟨fm, hf1, hf2⟩ := ft
exact ⟨f, fm, hf1, hf2⟩
instance externalDecidable [IsFinitePreFeynmanRule P] (v : P.VertexLabel) :
Decidable (External v) :=
decidable_of_decidable_of_iff (external_iff_exists_bijection v).symm
/-!
## Conditions to form a diagram.
-/
@ -317,6 +347,12 @@ def 𝓱𝓔 : Type := F.𝓱𝓔To𝓔𝓥.left
/-- The object in Over P.HalfEdgeLabel generated by a Feynman diagram. -/
def 𝓱𝓔𝓞 : Over P.HalfEdgeLabel := P.toHalfEdge.obj F.𝓱𝓔To𝓔𝓥
/-- The map `F.𝓱𝓔 → F.𝓔` as an object in `Over F.𝓔 `. -/
def 𝓱𝓔To𝓔 : Over F.𝓔 := P.toEdge.obj F.𝓱𝓔To𝓔𝓥
/-- The map `F.𝓱𝓔 → F.𝓥` as an object in `Over F.𝓥 `. -/
def 𝓱𝓔To𝓥 : Over F.𝓥 := P.toVertex.obj F.𝓱𝓔To𝓔𝓥
/-!
## Making a Feynman diagram
@ -383,6 +419,13 @@ class IsFiniteDiagram (F : FeynmanDiagram P) where
/-- The type of half-edges is decidable. -/
𝓱𝓔DecidableEq : DecidableEq F.𝓱𝓔
instance {𝓔 𝓥 𝓱𝓔 : Type} [h1 : Fintype 𝓔] [h2 : DecidableEq 𝓔]
[h3 : Fintype 𝓥] [h4 : DecidableEq 𝓥] [h5 : Fintype 𝓱𝓔] [h6 : DecidableEq 𝓱𝓔]
(𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel)
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥) (C : Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥) :
IsFiniteDiagram (mk' 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥 C) :=
⟨h1, h2, h3, h4, h5, h6⟩
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓔 :=
IsFiniteDiagram.𝓔Fintype
@ -401,6 +444,9 @@ instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓱𝓔 :=
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : DecidableEq F.𝓱𝓔 :=
IsFiniteDiagram.𝓱𝓔DecidableEq
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] (i : F.𝓱𝓔) (j : F.𝓔) :
Decidable (F.𝓱𝓔To𝓔.hom i = j) := IsFiniteDiagram.𝓔DecidableEq (F.𝓱𝓔To𝓔.hom i) j
instance fintypeProdHalfEdgeLabel𝓔𝓥 {F : FeynmanDiagram P} [IsFinitePreFeynmanRule P]
[IsFiniteDiagram F] : DecidableEq (P.HalfEdgeLabel × F.𝓔 × F.𝓥) :=
instDecidableEqProd
@ -706,7 +752,7 @@ instance [IsFiniteDiagram F] :
instance [IsFiniteDiagram F] : Decidable F.toSimpleGraph.Connected :=
decidable_of_iff _ (SimpleGraph.connected_iff F.toSimpleGraph).symm
/-- We say a Feynman diagram is connected if its simple graph is connected. -/
/-- A Feynman diagram is connected if its simple graph is connected. -/
def Connected : Prop := F.toSimpleGraph.Connected
instance [IsFiniteDiagram F] : Decidable (Connected F) :=

View file

@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Basic
import HepLean.FeynmanDiagrams.Momentum
/-!
# Feynman diagrams in Phi^4 theory
@ -65,6 +65,32 @@ instance : IsFinitePreFeynmanRule phi4PreFeynmanRules where
match v with
| 0 => instDecidableEqFin _
/-!
## The figure eight diagram
This section provides an example of the use of Feynman diagrams in HepLean.
-/
section Example
/-- The figure eight Feynman diagram. -/
abbrev figureEight : FeynmanDiagram phi4PreFeynmanRules :=
mk'
![0, 0] -- edges
![1] -- one internal vertex
![⟨0, 0, 0⟩, ⟨0, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 1, 0⟩] -- four half-edges
(by decide) -- the condition to form a Feynman diagram.
/-- `figureEight` is connected. We can get this from
`#eval Connected figureEight`. -/
lemma figureEight_connected : Connected figureEight := by decide
/-- The symmetry factor of `figureEight` is 8. We can get this from
`#eval symmetryFactor figureEight`. -/
lemma figureEight_symmetryFactor : symmetryFactor figureEight = 8 := by decide
end Example
end PhiFour

View file

@ -0,0 +1,219 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Algebra.Category.ModuleCat.Basic
import Mathlib.LinearAlgebra.StdBasis
import Mathlib.LinearAlgebra.Matrix.ToLin
import Mathlib.Data.Matrix.Rank
import Mathlib.Algebra.DirectSum.Module
import Mathlib.LinearAlgebra.SesquilinearForm
/-!
# Momentum in Feynman diagrams
The aim of this file is to associate with each half-edge of a Feynman diagram a momentum,
and constrain the momentums based conservation at each vertex and edge.
The number of loops of a Feynman diagram is related to the dimension of the resulting
vector space.
## TODO
- Prove lemmas that make the calcuation of the number of loops of a Feynman diagram easier.
## Note
This section is non-computable as we depend on the norm on `F.HalfEdgeMomenta`.
-/
namespace FeynmanDiagram
open CategoryTheory
open PreFeynmanRule
variable {P : PreFeynmanRule} (F : FeynmanDiagram P) [IsFiniteDiagram F]
/-!
## Vector spaces associated with momenta in Feynman diagrams.
We define the vector space associated with momenta carried by half-edges,
outflowing momenta of edges, and inflowing momenta of vertices.
We define the direct sum of the edge and vertex momentum spaces.
-/
/-- The type which assocaites to each half-edge a `1`-dimensional vector space.
Corresponding to that spanned by its momentum. -/
def HalfEdgeMomenta : Type := F.𝓱𝓔
instance : AddCommGroup F.HalfEdgeMomenta := Pi.addCommGroup
instance : Module F.HalfEdgeMomenta := Pi.module _ _ _
/-- An auxillary function used to define the Euclidean inner product on `F.HalfEdgeMomenta`. -/
def euclidInnerAux (x : F.HalfEdgeMomenta) : F.HalfEdgeMomenta →ₗ[] where
toFun y := ∑ i, (x i) * (y i)
map_add' z y :=
show (∑ i, (x i) * (z i + y i)) = (∑ i, x i * z i) + ∑ i, x i * (y i) by
simp only [mul_add, Finset.sum_add_distrib]
map_smul' c y :=
show (∑ i, x i * (c * y i)) = c * ∑ i, x i * y i by
rw [Finset.mul_sum]
refine Finset.sum_congr rfl (fun _ _ => by ring)
lemma euclidInnerAux_symm (x y : F.HalfEdgeMomenta) :
F.euclidInnerAux x y = F.euclidInnerAux y x := Finset.sum_congr rfl (fun _ _ => by ring)
/-- The Euclidean inner product on `F.HalfEdgeMomenta`. -/
def euclidInner : F.HalfEdgeMomenta →ₗ[] F.HalfEdgeMomenta →ₗ[] where
toFun x := F.euclidInnerAux x
map_add' x y := by
refine LinearMap.ext (fun z => ?_)
simp only [euclidInnerAux_symm, map_add, LinearMap.add_apply]
map_smul' c x := by
refine LinearMap.ext (fun z => ?_)
simp only [euclidInnerAux_symm, LinearMapClass.map_smul, smul_eq_mul, RingHom.id_apply,
LinearMap.smul_apply]
/-- The type which assocaites to each ege a `1`-dimensional vector space.
Corresponding to that spanned by its total outflowing momentum. -/
def EdgeMomenta : Type := F.𝓔
instance : AddCommGroup F.EdgeMomenta := Pi.addCommGroup
instance : Module F.EdgeMomenta := Pi.module _ _ _
/-- The type which assocaites to each ege a `1`-dimensional vector space.
Corresponding to that spanned by its total inflowing momentum. -/
def VertexMomenta : Type := F.𝓥
instance : AddCommGroup F.VertexMomenta := Pi.addCommGroup
instance : Module F.VertexMomenta := Pi.module _ _ _
/-- The map from `Fin 2` to `Type` landing on `EdgeMomenta` and `VertexMomenta`. -/
def EdgeVertexMomentaMap : Fin 2 → Type := fun i =>
match i with
| 0 => F.EdgeMomenta
| 1 => F.VertexMomenta
instance (i : Fin 2) : AddCommGroup (EdgeVertexMomentaMap F i) :=
match i with
| 0 => instAddCommGroupEdgeMomenta F
| 1 => instAddCommGroupVertexMomenta F
instance (i : Fin 2) : Module (EdgeVertexMomentaMap F i) :=
match i with
| 0 => instModuleRealEdgeMomenta F
| 1 => instModuleRealVertexMomenta F
/-- The direct sum of `EdgeMomenta` and `VertexMomenta`.-/
def EdgeVertexMomenta : Type := DirectSum (Fin 2) (EdgeVertexMomentaMap F)
instance : AddCommGroup F.EdgeVertexMomenta := DirectSum.instAddCommGroup _
instance : Module F.EdgeVertexMomenta := DirectSum.instModule
/-!
## Linear maps between the vector spaces.
We define various maps into `F.HalfEdgeMomenta`.
In particular, we define a map from `F.EdgeVertexMomenta` to `F.HalfEdgeMomenta`. This
map represents the space orthogonal (with respect to the standard Euclidean inner product)
to the allowed momenta of half-edges (up-to an offset determined by the
external momenta).
The number of loops of a diagram is defined as the number of half-edges minus
the rank of this matrix.
-/
/-- The linear map from `F.EdgeMomenta` to `F.HalfEdgeMomenta` induced by
the map `F.𝓱𝓔To𝓔.hom`. -/
def edgeToHalfEdgeMomenta : F.EdgeMomenta →ₗ[] F.HalfEdgeMomenta where
toFun x := x ∘ F.𝓱𝓔To𝓔.hom
map_add' _ _ := by rfl
map_smul' _ _ := by rfl
/-- The linear map from `F.VertexMomenta` to `F.HalfEdgeMomenta` induced by
the map `F.𝓱𝓔To𝓥.hom`. -/
def vertexToHalfEdgeMomenta : F.VertexMomenta →ₗ[] F.HalfEdgeMomenta where
toFun x := x ∘ F.𝓱𝓔To𝓥.hom
map_add' _ _ := rfl
map_smul' _ _ := rfl
/-- The linear map from `F.EdgeVertexMomenta` to `F.HalfEdgeMomenta` induced by
`F.edgeToHalfEdgeMomenta` and `F.vertexToHalfEdgeMomenta`. -/
def edgeVertexToHalfEdgeMomenta : F.EdgeVertexMomenta →ₗ[] F.HalfEdgeMomenta :=
DirectSum.toModule (Fin 2) F.HalfEdgeMomenta
(fun i => match i with | 0 => F.edgeToHalfEdgeMomenta | 1 => F.vertexToHalfEdgeMomenta)
/-!
## Submodules
We define submodules of `F.HalfEdgeMomenta` which correspond to
the orthogonal space to allowed momenta (up-to an offset), and the space of
allowed momenta.
-/
/-- The submodule of `F.HalfEdgeMomenta` corresponding to the range of
`F.edgeVertexToHalfEdgeMomenta`. -/
def orthogHalfEdgeMomenta : Submodule F.HalfEdgeMomenta :=
LinearMap.range F.edgeVertexToHalfEdgeMomenta
/-- The submodule of `F.HalfEdgeMomenta` corresponding to the allowed momenta. -/
def allowedHalfEdgeMomenta : Submodule F.HalfEdgeMomenta :=
Submodule.orthogonalBilin F.orthogHalfEdgeMomenta F.euclidInner
/-!
## Number of loops
We define the number of loops of a Feynman diagram as the dimension of the
allowed space of half-edge momenta.
-/
/-- The number of loops of a Feynman diagram. Defined as the dimension
of the space of allowed Half-loop momenta. -/
noncomputable def numberOfLoops : := FiniteDimensional.finrank F.allowedHalfEdgeMomenta
/-!
## Lemmas regarding `numberOfLoops`
We now give a series of lemmas which be used to help calculate the number of loops
for specific Feynman diagrams.
### TODO
- Complete this section.
-/
/-!
## Category theory
### TODO
- Complete this section.
-/
end FeynmanDiagram