refactor: Move complex vec
This commit is contained in:
parent
e3ad445866
commit
236e99bd33
13 changed files with 23 additions and 23 deletions
164
HepLean/Lorentz/ComplexVector/Modules.lean
Normal file
164
HepLean/Lorentz/ComplexVector/Modules.lean
Normal file
|
@ -0,0 +1,164 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Meta.Informal
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import Mathlib.RepresentationTheory.Rep
|
||||
import Mathlib.Logic.Equiv.TransferInstance
|
||||
/-!
|
||||
|
||||
## Modules associated with complex Lorentz vectors
|
||||
|
||||
We define the modules underlying complex Lorentz vectors.
|
||||
These definitions are preludes to the definitions of
|
||||
`Lorentz.complexContr` and `Lorentz.complexCo`.
|
||||
|
||||
-/
|
||||
|
||||
namespace Lorentz
|
||||
|
||||
noncomputable section
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
|
||||
/-- The module for contravariant (up-index) complex Lorentz vectors. -/
|
||||
structure ContrℂModule where
|
||||
/-- The underlying value as a vector `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
val : Fin 1 ⊕ Fin 3 → ℂ
|
||||
|
||||
namespace ContrℂModule
|
||||
|
||||
/-- The equivalence between `ContrℂModule` and `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
def toFin13ℂFun : ContrℂModule ≃ (Fin 1 ⊕ Fin 3 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `ContrℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommMonoid ContrℂModule := Equiv.addCommMonoid toFin13ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `ContrℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommGroup ContrℂModule := Equiv.addCommGroup toFin13ℂFun
|
||||
|
||||
/-- The instance of `Module` on `ContrℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : Module ℂ ContrℂModule := Equiv.module ℂ toFin13ℂFun
|
||||
|
||||
@[ext]
|
||||
lemma ext (ψ ψ' : ContrℂModule) (h : ψ.val = ψ'.val) : ψ = ψ' := by
|
||||
cases ψ
|
||||
cases ψ'
|
||||
subst h
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma val_add (ψ ψ' : ContrℂModule) : (ψ + ψ').val = ψ.val + ψ'.val := rfl
|
||||
|
||||
@[simp]
|
||||
lemma val_smul (r : ℂ) (ψ : ContrℂModule) : (r • ψ).val = r • ψ.val := rfl
|
||||
|
||||
/-- The linear equivalence between `ContrℂModule` and `(Fin 1 ⊕ Fin 3 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin13ℂEquiv : ContrℂModule ≃ₗ[ℂ] (Fin 1 ⊕ Fin 3 → ℂ) :=
|
||||
Equiv.linearEquiv ℂ toFin13ℂFun
|
||||
|
||||
/-- The underlying element of `Fin 1 ⊕ Fin 3 → ℂ` of a element in `ContrℂModule` defined
|
||||
through the linear equivalence `toFin13ℂEquiv`. -/
|
||||
abbrev toFin13ℂ (ψ : ContrℂModule) := toFin13ℂEquiv ψ
|
||||
|
||||
/-- The representation of the Lorentz group on `ContrℂModule`. -/
|
||||
def lorentzGroupRep : Representation ℂ (LorentzGroup 3) ContrℂModule where
|
||||
toFun M := {
|
||||
toFun := fun v => toFin13ℂEquiv.symm (LorentzGroup.toComplex M *ᵥ v.toFin13ℂ),
|
||||
map_add' := by
|
||||
intro ψ ψ'
|
||||
simp [mulVec_add]
|
||||
map_smul' := by
|
||||
intro r ψ
|
||||
simp [mulVec_smul]}
|
||||
map_one' := by
|
||||
ext i
|
||||
simp
|
||||
map_mul' M N := by
|
||||
ext i
|
||||
simp
|
||||
|
||||
/-- The representation of the SL(2, ℂ) on `ContrℂModule` induced by the representation of the
|
||||
Lorentz group. -/
|
||||
def SL2CRep : Representation ℂ SL(2, ℂ) ContrℂModule :=
|
||||
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
|
||||
|
||||
end ContrℂModule
|
||||
|
||||
/-- The module for covariant (up-index) complex Lorentz vectors. -/
|
||||
structure CoℂModule where
|
||||
/-- The underlying value as a vector `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
val : Fin 1 ⊕ Fin 3 → ℂ
|
||||
|
||||
namespace CoℂModule
|
||||
|
||||
/-- The equivalence between `CoℂModule` and `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
def toFin13ℂFun : CoℂModule ≃ (Fin 1 ⊕ Fin 3 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `CoℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommMonoid CoℂModule := Equiv.addCommMonoid toFin13ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `CoℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommGroup CoℂModule := Equiv.addCommGroup toFin13ℂFun
|
||||
|
||||
/-- The instance of `Module` on `CoℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : Module ℂ CoℂModule := Equiv.module ℂ toFin13ℂFun
|
||||
|
||||
/-- The linear equivalence between `CoℂModule` and `(Fin 1 ⊕ Fin 3 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin13ℂEquiv : CoℂModule ≃ₗ[ℂ] (Fin 1 ⊕ Fin 3 → ℂ) :=
|
||||
Equiv.linearEquiv ℂ toFin13ℂFun
|
||||
|
||||
/-- The underlying element of `Fin 1 ⊕ Fin 3 → ℂ` of a element in `CoℂModule` defined
|
||||
through the linear equivalence `toFin13ℂEquiv`. -/
|
||||
abbrev toFin13ℂ (ψ : CoℂModule) := toFin13ℂEquiv ψ
|
||||
|
||||
/-- The representation of the Lorentz group on `CoℂModule`. -/
|
||||
def lorentzGroupRep : Representation ℂ (LorentzGroup 3) CoℂModule where
|
||||
toFun M := {
|
||||
toFun := fun v => toFin13ℂEquiv.symm ((LorentzGroup.toComplex M)⁻¹ᵀ *ᵥ v.toFin13ℂ),
|
||||
map_add' := by
|
||||
intro ψ ψ'
|
||||
simp [mulVec_add]
|
||||
map_smul' := by
|
||||
intro r ψ
|
||||
simp [mulVec_smul]}
|
||||
map_one' := by
|
||||
ext i
|
||||
simp
|
||||
map_mul' M N := by
|
||||
ext1 x
|
||||
simp only [SpecialLinearGroup.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply,
|
||||
LinearEquiv.apply_symm_apply, mulVec_mulVec, EmbeddingLike.apply_eq_iff_eq]
|
||||
refine (congrFun (congrArg _ ?_) _)
|
||||
simp only [_root_.map_mul]
|
||||
rw [Matrix.mul_inv_rev]
|
||||
exact transpose_mul _ _
|
||||
|
||||
/-- The representation of the SL(2, ℂ) on `ContrℂModule` induced by the representation of the
|
||||
Lorentz group. -/
|
||||
def SL2CRep : Representation ℂ SL(2, ℂ) CoℂModule :=
|
||||
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
|
||||
|
||||
end CoℂModule
|
||||
|
||||
end
|
||||
end Lorentz
|
Loading…
Add table
Add a link
Reference in a new issue