feat: Add properties of Weyl fermions
This commit is contained in:
parent
0f1ca912cc
commit
24a20aef81
5 changed files with 743 additions and 55 deletions
212
HepLean/SpaceTime/WeylFermion/Modules.lean
Normal file
212
HepLean/SpaceTime/WeylFermion/Modules.lean
Normal file
|
@ -0,0 +1,212 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Meta.Informal
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import Mathlib.RepresentationTheory.Rep
|
||||
import HepLean.Tensors.Basic
|
||||
import Mathlib.Logic.Equiv.TransferInstance
|
||||
/-!
|
||||
|
||||
## Modules associated with Fermions
|
||||
|
||||
Weyl fermions live in the vector space `ℂ^2`, defined here as `Fin 2 → ℂ`.
|
||||
However if we simply define the Module of Weyl fermions as `Fin 2 → ℂ` we get casting problems,
|
||||
where e.g. left-handed fermions can be cast to right-handed fermions etc.
|
||||
To overcome this, for each type of Weyl fermion we define a structure that wraps `Fin 2 → ℂ`,
|
||||
and these structures we define the instance of a module. This prevents casting between different
|
||||
types of fermions.
|
||||
|
||||
-/
|
||||
|
||||
namespace Fermion
|
||||
noncomputable section
|
||||
|
||||
section LeftHanded
|
||||
|
||||
/-- The module in which left handed fermions live. This is equivalent to `Fin 2 → ℂ`. -/
|
||||
structure LeftHandedModule where
|
||||
/-- The underlying value in `Fin 2 → ℂ`. -/
|
||||
val : Fin 2 → ℂ
|
||||
|
||||
namespace LeftHandedModule
|
||||
|
||||
/-- The equivalence between `LeftHandedModule` and `Fin 2 → ℂ`. -/
|
||||
def toFin2ℂFun : LeftHandedModule ≃ (Fin 2 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `LeftHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommMonoid LeftHandedModule := Equiv.addCommMonoid toFin2ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `LeftHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommGroup LeftHandedModule := Equiv.addCommGroup toFin2ℂFun
|
||||
|
||||
/-- The instance of `Module` on `LeftHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : Module ℂ LeftHandedModule := Equiv.module ℂ toFin2ℂFun
|
||||
|
||||
/-- The linear equivalence between `LeftHandedModule` and `(Fin 2 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin2ℂEquiv : LeftHandedModule ≃ₗ[ℂ] (Fin 2 → ℂ) where
|
||||
toFun := toFin2ℂFun
|
||||
map_add' := fun _ _ => rfl
|
||||
map_smul' := fun _ _ => rfl
|
||||
invFun := toFin2ℂFun.symm
|
||||
left_inv := fun _ => rfl
|
||||
right_inv := fun _ => rfl
|
||||
|
||||
/-- The underlying element of `Fin 2 → ℂ` of a element in `LeftHandedModule` defined
|
||||
through the linear equivalence `toFin2ℂEquiv`. -/
|
||||
abbrev toFin2ℂ (ψ : LeftHandedModule) := toFin2ℂEquiv ψ
|
||||
|
||||
end LeftHandedModule
|
||||
|
||||
end LeftHanded
|
||||
|
||||
section AltLeftHanded
|
||||
|
||||
/-- The module in which alt-left handed fermions live. This is equivalent to `Fin 2 → ℂ`. -/
|
||||
structure AltLeftHandedModule where
|
||||
/-- The underlying value in `Fin 2 → ℂ`. -/
|
||||
val : Fin 2 → ℂ
|
||||
|
||||
namespace AltLeftHandedModule
|
||||
|
||||
/-- The equivalence between `AltLeftHandedModule` and `Fin 2 → ℂ`. -/
|
||||
def toFin2ℂFun : AltLeftHandedModule ≃ (Fin 2 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `AltLeftHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommMonoid AltLeftHandedModule := Equiv.addCommMonoid toFin2ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `AltLeftHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommGroup AltLeftHandedModule := Equiv.addCommGroup toFin2ℂFun
|
||||
|
||||
/-- The instance of `Module` on `AltLeftHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : Module ℂ AltLeftHandedModule := Equiv.module ℂ toFin2ℂFun
|
||||
|
||||
/-- The linear equivalence between `AltLeftHandedModule` and `(Fin 2 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin2ℂEquiv : AltLeftHandedModule ≃ₗ[ℂ] (Fin 2 → ℂ) where
|
||||
toFun := toFin2ℂFun
|
||||
map_add' := fun _ _ => rfl
|
||||
map_smul' := fun _ _ => rfl
|
||||
invFun := toFin2ℂFun.symm
|
||||
left_inv := fun _ => rfl
|
||||
right_inv := fun _ => rfl
|
||||
|
||||
/-- The underlying element of `Fin 2 → ℂ` of a element in `AltLeftHandedModule` defined
|
||||
through the linear equivalence `toFin2ℂEquiv`. -/
|
||||
abbrev toFin2ℂ (ψ : AltLeftHandedModule) := toFin2ℂEquiv ψ
|
||||
|
||||
end AltLeftHandedModule
|
||||
|
||||
end AltLeftHanded
|
||||
|
||||
section RightHanded
|
||||
|
||||
/-- The module in which right handed fermions live. This is equivalent to `Fin 2 → ℂ`. -/
|
||||
structure RightHandedModule where
|
||||
/-- The underlying value in `Fin 2 → ℂ`. -/
|
||||
val : Fin 2 → ℂ
|
||||
|
||||
namespace RightHandedModule
|
||||
|
||||
/-- The equivalence between `RightHandedModule` and `Fin 2 → ℂ`. -/
|
||||
def toFin2ℂFun : RightHandedModule ≃ (Fin 2 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `RightHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommMonoid RightHandedModule := Equiv.addCommMonoid toFin2ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `RightHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommGroup RightHandedModule := Equiv.addCommGroup toFin2ℂFun
|
||||
|
||||
/-- The instance of `Module` on `RightHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : Module ℂ RightHandedModule := Equiv.module ℂ toFin2ℂFun
|
||||
|
||||
/-- The linear equivalence between `RightHandedModule` and `(Fin 2 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin2ℂEquiv : RightHandedModule ≃ₗ[ℂ] (Fin 2 → ℂ) where
|
||||
toFun := toFin2ℂFun
|
||||
map_add' := fun _ _ => rfl
|
||||
map_smul' := fun _ _ => rfl
|
||||
invFun := toFin2ℂFun.symm
|
||||
left_inv := fun _ => rfl
|
||||
right_inv := fun _ => rfl
|
||||
|
||||
/-- The underlying element of `Fin 2 → ℂ` of a element in `RightHandedModule` defined
|
||||
through the linear equivalence `toFin2ℂEquiv`. -/
|
||||
abbrev toFin2ℂ (ψ : RightHandedModule) := toFin2ℂEquiv ψ
|
||||
|
||||
end RightHandedModule
|
||||
|
||||
end RightHanded
|
||||
|
||||
section AltRightHanded
|
||||
|
||||
/-- The module in which alt-right handed fermions live. This is equivalent to `Fin 2 → ℂ`. -/
|
||||
structure AltRightHandedModule where
|
||||
/-- The underlying value in `Fin 2 → ℂ`. -/
|
||||
val : Fin 2 → ℂ
|
||||
|
||||
namespace AltRightHandedModule
|
||||
|
||||
/-- The equivalence between `AltRightHandedModule` and `Fin 2 → ℂ`. -/
|
||||
def toFin2ℂFun : AltRightHandedModule ≃ (Fin 2 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `AltRightHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommMonoid AltRightHandedModule := Equiv.addCommMonoid toFin2ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `AltRightHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : AddCommGroup AltRightHandedModule := Equiv.addCommGroup toFin2ℂFun
|
||||
|
||||
/-- The instance of `Module` on `AltRightHandedModule` defined via its equivalence
|
||||
with `Fin 2 → ℂ`. -/
|
||||
instance : Module ℂ AltRightHandedModule := Equiv.module ℂ toFin2ℂFun
|
||||
|
||||
/-- The linear equivalence between `AltRightHandedModule` and `(Fin 2 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin2ℂEquiv : AltRightHandedModule ≃ₗ[ℂ] (Fin 2 → ℂ) where
|
||||
toFun := toFin2ℂFun
|
||||
map_add' := fun _ _ => rfl
|
||||
map_smul' := fun _ _ => rfl
|
||||
invFun := toFin2ℂFun.symm
|
||||
left_inv := fun _ => rfl
|
||||
right_inv := fun _ => rfl
|
||||
|
||||
/-- The underlying element of `Fin 2 → ℂ` of a element in `AltRightHandedModule` defined
|
||||
through the linear equivalence `toFin2ℂEquiv`. -/
|
||||
abbrev toFin2ℂ (ψ : AltRightHandedModule) := toFin2ℂEquiv ψ
|
||||
|
||||
end AltRightHandedModule
|
||||
|
||||
end AltRightHanded
|
||||
|
||||
end
|
||||
end Fermion
|
Loading…
Add table
Add a link
Reference in a new issue