feat: Metric, unit, contract of complex Lorentz vec
This commit is contained in:
parent
12dd1fbbac
commit
255ea5ffd7
10 changed files with 677 additions and 44 deletions
89
HepLean/SpaceTime/LorentzVector/Complex/Unit.lean
Normal file
89
HepLean/SpaceTime/LorentzVector/Complex/Unit.lean
Normal file
|
@ -0,0 +1,89 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzVector.Complex.Two
|
||||
/-!
|
||||
|
||||
# Unit for complex Lorentz vectors
|
||||
|
||||
-/
|
||||
noncomputable section
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
open CategoryTheory.MonoidalCategory
|
||||
namespace Lorentz
|
||||
|
||||
/-- The contra-co unit for complex lorentz vectors. Usually denoted `δⁱᵢ`. -/
|
||||
def contrCoUnitVal : (complexContr ⊗ complexCo).V :=
|
||||
contrCoToMatrix.symm 1
|
||||
|
||||
/-- The contra-co unit for complex lorentz vectors as a morphism
|
||||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexCo`, manifesting the invaraince under
|
||||
the `SL(2, ℂ)` action. -/
|
||||
def contrCoUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexCo where
|
||||
hom := {
|
||||
toFun := fun a =>
|
||||
let a' : ℂ := a
|
||||
a' • contrCoUnitVal,
|
||||
map_add' := fun x y => by
|
||||
simp only [add_smul],
|
||||
map_smul' := fun m x => by
|
||||
simp only [smul_smul]
|
||||
rfl}
|
||||
comm M := by
|
||||
ext x : 2
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • contrCoUnitVal =
|
||||
(TensorProduct.map (complexContr.ρ M) (complexCo.ρ M)) (x' • contrCoUnitVal)
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||||
apply congrArg
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, contrCoUnitVal]
|
||||
erw [contrCoToMatrix_ρ_symm]
|
||||
apply congrArg
|
||||
simp
|
||||
|
||||
/-- The co-contra unit for complex lorentz vectors. Usually denoted `δᵢⁱ`. -/
|
||||
def coContrUnitVal : (complexCo ⊗ complexContr).V :=
|
||||
coContrToMatrix.symm 1
|
||||
|
||||
/-- The co-contra unit for complex lorentz vectors as a morphism
|
||||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexCo ⊗ complexContr`, manifesting the invaraince under
|
||||
the `SL(2, ℂ)` action. -/
|
||||
def coContrUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexCo ⊗ complexContr where
|
||||
hom := {
|
||||
toFun := fun a =>
|
||||
let a' : ℂ := a
|
||||
a' • coContrUnitVal,
|
||||
map_add' := fun x y => by
|
||||
simp only [add_smul],
|
||||
map_smul' := fun m x => by
|
||||
simp only [smul_smul]
|
||||
rfl}
|
||||
comm M := by
|
||||
ext x : 2
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • coContrUnitVal =
|
||||
(TensorProduct.map (complexCo.ρ M) (complexContr.ρ M)) (x' • coContrUnitVal)
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||||
apply congrArg
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, coContrUnitVal]
|
||||
erw [coContrToMatrix_ρ_symm]
|
||||
apply congrArg
|
||||
symm
|
||||
refine transpose_eq_one.mp ?h.h.h.a
|
||||
simp
|
||||
|
||||
end Lorentz
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue