refactor: Start of major refactor of index notation
This commit is contained in:
parent
96e911ec27
commit
25a1d84c91
5 changed files with 567 additions and 2 deletions
|
@ -541,8 +541,10 @@ def domCoprod : MultilinearMap R (fun x => 𝓣.ColorModule (Sum.elim cX cY x))
|
|||
(PiTensorProduct.tprod R (𝓣.inrPureTensor f))
|
||||
map_add' f xy v1 v2:= by
|
||||
match xy with
|
||||
| Sum.inl x => simp [← TensorProduct.add_tmul]
|
||||
| Sum.inr y => simp [← TensorProduct.tmul_add]
|
||||
| Sum.inl x => simp only [Sum.elim_inl, inlPureTensor_update_left, MultilinearMap.map_add,
|
||||
inrPureTensor_update_left, ← add_tmul]
|
||||
| Sum.inr y => simp only [Sum.elim_inr, inlPureTensor_update_right, inrPureTensor_update_right,
|
||||
MultilinearMap.map_add, ← tmul_add]
|
||||
map_smul' f xy r p := by
|
||||
match xy with
|
||||
| Sum.inl x => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
|
|
249
HepLean/Tensors/ColorCat/Basic.lean
Normal file
249
HepLean/Tensors/ColorCat/Basic.lean
Normal file
|
@ -0,0 +1,249 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.CategoryTheory.Category.Basic
|
||||
import Mathlib.CategoryTheory.Types
|
||||
import Mathlib.CategoryTheory.Monoidal.Category
|
||||
import Mathlib.CategoryTheory.Comma.Over
|
||||
import Mathlib.CategoryTheory.Core
|
||||
import Mathlib.CategoryTheory.Monoidal.Braided.Basic
|
||||
import HepLean.SpaceTime.WeylFermion.Basic
|
||||
import HepLean.SpaceTime.LorentzVector.Complex
|
||||
/-!
|
||||
|
||||
## Over category.
|
||||
|
||||
|
||||
-/
|
||||
|
||||
namespace IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
/-- The core of the category of Types over C. -/
|
||||
def OverColor (C : Type) := CategoryTheory.Core (CategoryTheory.Over C)
|
||||
|
||||
/-- The instance of `OverColor C` as a groupoid. -/
|
||||
instance (C : Type) : Groupoid (OverColor C) := coreCategory
|
||||
|
||||
namespace OverColor
|
||||
|
||||
namespace Hom
|
||||
|
||||
variable {C : Type} {f g h : OverColor C}
|
||||
|
||||
/-- Given a hom in `OverColor C` the underlying equivalence between types. -/
|
||||
def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
|
||||
toFun := m.hom.left
|
||||
invFun := m.inv.left
|
||||
left_inv := by
|
||||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.hom_inv_id)
|
||||
right_inv := by
|
||||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.inv_hom_id)
|
||||
|
||||
@[simp]
|
||||
lemma toEquiv_id (f : OverColor C) : toEquiv (𝟙 f) = Equiv.refl f.left := by
|
||||
ext x
|
||||
simp [toEquiv]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by
|
||||
ext x
|
||||
simp [toEquiv]
|
||||
rfl
|
||||
|
||||
lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) :
|
||||
f.hom ((toEquiv m).symm i) = g.hom i := by
|
||||
simpa [toEquiv, types_comp] using congrFun m.inv.w i
|
||||
|
||||
lemma toEquiv_comp_hom (m : f ⟶ g) : g.hom ∘ (toEquiv m) = f.hom := by
|
||||
ext x
|
||||
simpa [types_comp, toEquiv] using congrFun m.hom.w x
|
||||
|
||||
end Hom
|
||||
|
||||
section monoidal
|
||||
|
||||
/-!
|
||||
|
||||
## The monoidal structure on `OverColor C`.
|
||||
|
||||
The category `OverColor C` can, through the disjoint union, be given the structure of a
|
||||
symmetric monoidal category.
|
||||
|
||||
-/
|
||||
|
||||
@[simps!]
|
||||
instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
|
||||
tensorObj f g := Over.mk (Sum.elim f.hom g.hom)
|
||||
tensorUnit := Over.mk Empty.elim
|
||||
whiskerLeft X Y1 Y2 m := Over.isoMk (Equiv.sumCongr (Equiv.refl X.left) (Hom.toEquiv m)).toIso
|
||||
(by
|
||||
ext x
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||||
rfl)
|
||||
whiskerRight m X := Over.isoMk (Equiv.sumCongr (Hom.toEquiv m) (Equiv.refl X.left)).toIso
|
||||
(by
|
||||
ext x
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||||
rfl)
|
||||
associator X Y Z := {
|
||||
hom := Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl),
|
||||
inv := (Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl)).symm,
|
||||
hom_inv_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.inv_hom_id]
|
||||
rfl}
|
||||
leftUnitor X := {
|
||||
hom := Over.isoMk (Equiv.emptySum Empty X.left).toIso
|
||||
inv := (Over.isoMk (Equiv.emptySum Empty X.left).toIso).symm
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]}
|
||||
rightUnitor X := {
|
||||
hom := Over.isoMk (Equiv.sumEmpty X.left Empty).toIso
|
||||
inv := (Over.isoMk (Equiv.sumEmpty X.left Empty).toIso).symm
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]}
|
||||
|
||||
instance (C : Type) : MonoidalCategory (OverColor C) where
|
||||
tensorHom_def f g := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => rfl
|
||||
tensor_id X Y := CategoryTheory.Iso.ext <| (Iso.eq_inv_comp _).mp rfl
|
||||
tensor_comp f1 f2 g1 g2 := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
whiskerLeft_id X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
id_whiskerRight X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
associator_naturality {X1 X2 X3 Y1 Y2 Y3} f1 f2 f3 :=
|
||||
CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
leftUnitor_naturality f :=
|
||||
CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => exact Empty.elim x
|
||||
| Sum.inr x => rfl
|
||||
rightUnitor_naturality f :=
|
||||
CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => exact Empty.elim x
|
||||
pentagon f g h i := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inl (Sum.inr x)) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
triangle f g := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => exact Empty.elim x
|
||||
| Sum.inr x => rfl
|
||||
|
||||
instance (C : Type) : BraidedCategory (OverColor C) where
|
||||
braiding f g := {
|
||||
hom := Over.isoMk (Equiv.sumComm f.left g.left).toIso
|
||||
inv := (Over.isoMk (Equiv.sumComm f.left g.left).toIso).symm
|
||||
hom_inv_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl,
|
||||
inv_hom_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl}
|
||||
braiding_naturality_right X Y1 Y2 f := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
braiding_naturality_left X f := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
hexagon_forward X1 X2 X3 := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
hexagon_reverse X1 X2 X3 := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
| Sum.inl x => rfl
|
||||
|
||||
instance (C : Type) : SymmetricCategory (OverColor C) where
|
||||
toBraidedCategory := instBraidedCategory C
|
||||
symmetry X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
end monoidal
|
||||
|
||||
def mk (f : X → C) : OverColor C := Over.mk f
|
||||
|
||||
open MonoidalCategory
|
||||
|
||||
def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) := {
|
||||
hom := Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl),
|
||||
inv := (Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl)).symm,
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Iso.symm_hom, Iso.inv_hom_id]
|
||||
rfl}
|
||||
|
||||
end OverColor
|
||||
|
||||
end IndexNotation
|
89
HepLean/Tensors/Tree/Basic.lean
Normal file
89
HepLean/Tensors/Tree/Basic.lean
Normal file
|
@ -0,0 +1,89 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
/-!
|
||||
|
||||
## Tensor trees
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
structure TensorStruct where
|
||||
C : Type
|
||||
G : Type
|
||||
G_group : Group G
|
||||
k : Type
|
||||
k_commRing : CommRing k
|
||||
F : MonoidalFunctor (OverColor C) (Rep k G)
|
||||
τ : C → C
|
||||
evalNo : C → N
|
||||
|
||||
namespace TensorStruct
|
||||
|
||||
variable (S : TensorStruct)
|
||||
|
||||
instance : CommRing S.k := S.k_commRing
|
||||
|
||||
instance : Group S.G := S.G_group
|
||||
|
||||
end TensorStruct
|
||||
|
||||
inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Type where
|
||||
| tensorNode {n : ℕ} {c : Fin n → S.C} : S.F.obj (OverColor.mk c) → TensorTree S c
|
||||
| add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c
|
||||
| perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1
|
||||
| prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
(t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm)
|
||||
| scale {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
|
||||
| mult {n m : ℕ} {c : Fin n.succ → S.C} {c1 : Fin m.succ → S.C} :
|
||||
(i : Fin n.succ) → (j : Fin m.succ) → TensorTree S c → TensorTree S c1 →
|
||||
TensorTree S (Sum.elim (c ∘ Fin.succAbove i) (c1 ∘ Fin.succAbove j) ∘ finSumFinEquiv.symm)
|
||||
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
||||
(j : Fin n.succ) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
| jiggle {n : ℕ} {c : Fin n → S.C} : (i : Fin n) → TensorTree S c →
|
||||
TensorTree S (Function.update c i (S.τ (c i)))
|
||||
| eval {n : ℕ} {c : Fin n.succ → S.C} : (i : Fin n.succ) → (x : Fin (S.evalNo (c i))) →
|
||||
TensorTree S c → TensorTree S (c ∘ Fin.succAbove i)
|
||||
|
||||
namespace TensorTree
|
||||
|
||||
variable {S : TensorStruct} {n : ℕ} {c : Fin n → S.C} (T : TensorTree S c)
|
||||
|
||||
open MonoidalCategory
|
||||
open TensorProduct
|
||||
|
||||
def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
||||
| tensorNode _ => 1
|
||||
| add t1 t2 => t1.size + t2.size + 1
|
||||
| perm _ t => t.size + 1
|
||||
| scale _ t => t.size + 1
|
||||
| prod t1 t2 => t1.size + t2.size + 1
|
||||
| mult _ _ t1 t2 => t1.size + t2.size + 1
|
||||
| contr _ _ t => t.size + 1
|
||||
| jiggle _ t => t.size + 1
|
||||
| eval _ _ t => t.size + 1
|
||||
|
||||
|
||||
noncomputable section
|
||||
|
||||
def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
|
||||
| tensorNode t => t
|
||||
| add t1 t2 => t1.tensor + t2.tensor
|
||||
| perm σ t => (S.F.map σ).hom t.tensor
|
||||
| scale a t => a • t.tensor
|
||||
| prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor))
|
||||
| _ => 0
|
||||
|
||||
lemma tensor_tensorNode {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
|
||||
(tensorNode T).tensor = T := rfl
|
||||
|
||||
end
|
||||
|
||||
end TensorTree
|
27
HepLean/Tensors/Tree/Elab.lean
Normal file
27
HepLean/Tensors/Tree/Elab.lean
Normal file
|
@ -0,0 +1,27 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import Lean.Elab.Term
|
||||
/-!
|
||||
|
||||
## Elaboration of tensor trees
|
||||
|
||||
This file turns
|
||||
|
||||
-/
|
||||
open Lean
|
||||
open Lean.Elab.Term
|
||||
|
||||
open Lean
|
||||
open Lean.Meta
|
||||
open Lean.Elab
|
||||
open Lean.Elab.Term
|
||||
|
||||
declare_syntax_cat tensorExpr
|
||||
|
||||
syntax ident (ppSpace term)* : tensorExpr
|
||||
|
||||
syntax tensorExpr "⊗" tensorExpr : tensorExpr
|
Loading…
Add table
Add a link
Reference in a new issue