refactor: Docs for FieldOpFreeAlgebra
This commit is contained in:
parent
48e3417d5d
commit
2614e0bd92
6 changed files with 46 additions and 29 deletions
|
@ -35,11 +35,13 @@ namespace FieldSpecification
|
|||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
/-- For a field specification `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is
|
||||
the free algebra generated by creation and annihilation parts of field operators defined in
|
||||
`𝓕.CrAnFieldOp`.
|
||||
It represents the algebra containing all possible products and linear combinations
|
||||
of creation and annihilation parts of field operators, without imposing any conditions.
|
||||
-/
|
||||
the free algebra generated by `𝓕.CrAnFieldOp`.
|
||||
|
||||
The algebra `𝓕.FieldOpFreeAlgebra` satisfies the universal property that for any other algebra
|
||||
`A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
|
||||
the inclusion of the creation and annihilation parts of field operators into the
|
||||
operator algebra) there is a unqiue algebra map `g : 𝓕.FieldOpFreeAlgebra → A`
|
||||
through which `f` factors. -/
|
||||
abbrev FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type := FreeAlgebra ℂ 𝓕.CrAnFieldOp
|
||||
|
||||
namespace FieldOpFreeAlgebra
|
||||
|
@ -75,16 +77,21 @@ lemma ofCrAnListF_singleton (φ : 𝓕.CrAnFieldOp) :
|
|||
|
||||
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
|
||||
`𝓕.FieldOp` by summing over the creation and annihilation components of `𝓕.FieldOp`.
|
||||
For example for `φ₁` an incoming asymptotic field operator we get `φ₁ᶜ`, and for `φ₁` a
|
||||
position field operator we get `φ₁ᶜ + φ₁ᵃ`. -/
|
||||
For example for `φ₁` an incoming asymptotic field operator we get
|
||||
`ofCrAnOpF φ₁ᶜ`, and for `φ₁` a
|
||||
position field operator we get `ofCrAnOpF φ₁ᶜ + ofCrAnOpF φ₁ᵃ`. -/
|
||||
def ofFieldOpF (φ : 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 :=
|
||||
∑ (i : 𝓕.fieldOpToCrAnType φ), ofCrAnOpF ⟨φ, i⟩
|
||||
|
||||
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
|
||||
list of `𝓕.FieldOp` by summing over the creation and annihilation components.
|
||||
For example, `φ₁` and `φ₂` position states `[φ1, φ2]` gets sent to `(φ1ᶜ+ φ1ᵃ) * (φ2ᶜ+ φ2ᵃ)`. -/
|
||||
For example, `φ₁` and `φ₂` position states `[φ1, φ2]` gets sent to
|
||||
`(ofCrAnOpF φ1ᶜ + ofCrAnOpF φ1ᵃ) * (ofCrAnOpF φ2ᶜ + ofCrAnOpF φ2ᵃ)`. -/
|
||||
def ofFieldOpListF (φs : List 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofFieldOpF φs).prod
|
||||
|
||||
remark notation_drop := "In doc-strings we will often drop explicit applications of `ofCrAnOpF`,
|
||||
`ofCrAnListF`, `ofFieldOpF`, and `ofFieldOpListF`"
|
||||
|
||||
/-- Coercion from `List 𝓕.FieldOp` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
|
||||
instance : Coe (List 𝓕.FieldOp) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF⟩
|
||||
|
||||
|
|
|
@ -237,8 +237,8 @@ lemma directSum_eq_bosonic_plus_fermionic
|
|||
abel
|
||||
|
||||
/-- For a field statistic `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is graded by `FieldStatistic`.
|
||||
Those `ofCrAnListF φs` for which `φs` has `bosonic` statistics form one part of the grading,
|
||||
whilst those where `φs` has `fermionic` statistics form the other part of the grading. -/
|
||||
Those `ofCrAnListF φs` for which `φs` has `bosonic` statistics span one part of the grading,
|
||||
whilst those where `φs` has `fermionic` statistics span the other part of the grading. -/
|
||||
instance fieldOpFreeAlgebraGrade :
|
||||
GradedAlgebra (A := 𝓕.FieldOpFreeAlgebra) statisticSubmodule where
|
||||
one_mem := by
|
||||
|
|
|
@ -24,10 +24,11 @@ namespace FieldOpFreeAlgebra
|
|||
open FieldStatistic
|
||||
|
||||
/-- For a field specification `𝓕`, the super commutator `superCommuteF` is defined as the linear
|
||||
map `𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra` such that
|
||||
`superCommuteF (φ₀ᶜ…φₙᵃ) (φ₀'ᶜ…φₙ'ᶜ)` is equal to
|
||||
`φ₀ᶜ…φₙᵃ * φ₀'ᶜ…φₙ'ᶜ - 𝓢(φ₀ᶜ…φₙᵃ, φ₀'ᶜ…φₙ'ᶜ) φ₀'ᶜ…φₙ'ᶜ * φ₀ᶜ…φₙᵃ`.
|
||||
The notation `[a, b]ₛca` is used for this super commutator. -/
|
||||
map `𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra`
|
||||
which on the lists `φs` and `φs'` of `𝓕.CrAnFieldOp` gives
|
||||
`superCommuteF φs φs' = φs * φs' - 𝓢(φs, φs') • φs' * φs`.
|
||||
|
||||
The notation `[a, b]ₛca` can be used for `superCommuteF a b`. -/
|
||||
noncomputable def superCommuteF : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ]
|
||||
𝓕.FieldOpFreeAlgebra :=
|
||||
Basis.constr ofCrAnListFBasis ℂ fun φs =>
|
||||
|
@ -404,9 +405,12 @@ lemma superCommuteF_ofCrAnListF_ofFieldOpListF_cons (φ : 𝓕.FieldOp) (φs : L
|
|||
simp [mul_comm]
|
||||
|
||||
/--
|
||||
Within the creation and annihilation algebra, we have that
|
||||
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
|
||||
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
|
||||
For a field specification `𝓕`, and to lists `φs = φ₀…φₙ` and `φs'` of `𝓕.CrAnFieldOp`
|
||||
the following super commutation relation holds:
|
||||
|
||||
`[φs', φ₀…φₙ]ₛca = ∑ i, 𝓢(φs', φ₀…φᵢ₋₁) • φ₀…φᵢ₋₁ * [φs', φᵢ]ₛca * φᵢ₊₁ … φₙ`
|
||||
|
||||
The proof of this relation is via induction on the length of `φs`.
|
||||
-/
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum (φs : List 𝓕.CrAnFieldOp) :
|
||||
(φs' : List 𝓕.CrAnFieldOp) → [ofCrAnListF φs, ofCrAnListF φs']ₛca =
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue