feat: bounded properties of Higgs potential
This commit is contained in:
parent
0dd6f7390e
commit
27721bc476
4 changed files with 249 additions and 57 deletions
|
@ -22,6 +22,7 @@ open HiggsField
|
|||
|
||||
noncomputable section
|
||||
|
||||
/-! TODO: Make the potential a structure. -/
|
||||
/-- The potential of the two Higgs doublet model. -/
|
||||
def potential (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ)
|
||||
(m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) (Φ1 Φ2 : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
|
@ -88,6 +89,40 @@ lemma left_zero : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m
|
|||
def IsBounded (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ) (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) : Prop :=
|
||||
∃ c, ∀ Φ1 Φ2 x, c ≤ potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ2 x
|
||||
|
||||
lemma isBounded_right_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
StandardModel.HiggsField.potential.IsBounded (- m₁₁2) (𝓵₁/2) := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
use c
|
||||
intro Φ x
|
||||
have hc1 := hc Φ 0 x
|
||||
rw [right_zero] at hc1
|
||||
exact hc1
|
||||
|
||||
lemma isBounded_left_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
StandardModel.HiggsField.potential.IsBounded (- m₂₂2) (𝓵₂/2) := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
use c
|
||||
intro Φ x
|
||||
have hc1 := hc 0 Φ x
|
||||
rw [left_zero] at hc1
|
||||
exact hc1
|
||||
|
||||
lemma isBounded_𝓵₁_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
0 ≤ 𝓵₁ := by
|
||||
have h1 := isBounded_right_zero h
|
||||
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
linarith
|
||||
|
||||
lemma isBounded_𝓵₂_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
0 ≤ 𝓵₂ := by
|
||||
have h1 := isBounded_left_zero h
|
||||
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
linarith
|
||||
|
||||
/-! TODO: Show that if the potential is bounded then `0 ≤ 𝓵₁` and `0 ≤ 𝓵₂`. -/
|
||||
/-!
|
||||
|
||||
|
|
|
@ -59,6 +59,18 @@ lemma smooth_toFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 → ℂ) toF
|
|||
def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
def ofReal (a : ℝ) : HiggsVec :=
|
||||
![Real.sqrt a, 0]
|
||||
|
||||
@[simp]
|
||||
lemma ofReal_normSq {a : ℝ} (ha : 0 ≤ a) : ‖ofReal a‖ ^ 2 = a := by
|
||||
simp only [ofReal]
|
||||
rw [PiLp.norm_sq_eq_of_L2]
|
||||
rw [@Fin.sum_univ_two]
|
||||
simp only [Fin.isValue, cons_val_zero, norm_real, Real.norm_eq_abs, _root_.sq_abs, cons_val_one,
|
||||
head_cons, norm_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero]
|
||||
exact Real.sq_sqrt ha
|
||||
|
||||
end HiggsVec
|
||||
|
||||
/-!
|
||||
|
@ -90,6 +102,9 @@ def HiggsVec.toField (φ : HiggsVec) : HiggsField where
|
|||
rw [Bundle.contMDiffAt_section]
|
||||
exact smoothAt_const
|
||||
|
||||
@[simp]
|
||||
lemma HiggsVec.toField_apply (φ : HiggsVec) (x : SpaceTime) : (φ.toField x) = φ := rfl
|
||||
|
||||
namespace HiggsField
|
||||
open HiggsVec
|
||||
|
||||
|
@ -149,6 +164,8 @@ lemma isConst_of_higgsVec (φ : HiggsVec) : φ.toField.IsConst := fun _ => congr
|
|||
lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : HiggsVec), Φ = φ.toField :=
|
||||
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
|
||||
|
||||
def ofReal (a : ℝ) : HiggsField := (HiggsVec.ofReal a).toField
|
||||
|
||||
end HiggsField
|
||||
|
||||
end
|
||||
|
|
|
@ -146,6 +146,9 @@ lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ,
|
|||
exact ((φ.apply_re_smooth 1).smul (φ.apply_re_smooth 1)).add $
|
||||
(φ.apply_im_smooth 1).smul (φ.apply_im_smooth 1)
|
||||
|
||||
lemma ofReal_normSq {a : ℝ} (ha : 0 ≤ a) (x : SpaceTime) : (ofReal a).normSq x = a := by
|
||||
simp only [normSq, ofReal, HiggsVec.toField_apply, ha, HiggsVec.ofReal_normSq]
|
||||
|
||||
end HiggsField
|
||||
|
||||
end StandardModel
|
||||
|
|
|
@ -62,55 +62,27 @@ lemma complete_square (μ2 𝓵 : ℝ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : S
|
|||
field_simp
|
||||
ring
|
||||
|
||||
/-!
|
||||
|
||||
## Boundness of the potential
|
||||
|
||||
-/
|
||||
|
||||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||||
def IsBounded (μ2 𝓵 : ℝ) : Prop :=
|
||||
∃ c, ∀ Φ x, c ≤ potential μ2 𝓵 Φ x
|
||||
|
||||
/-! TODO: Show when 𝓵 < 0, the potential is not bounded. -/
|
||||
|
||||
section lowerBound
|
||||
/-!
|
||||
|
||||
## Lower bound on potential
|
||||
|
||||
-/
|
||||
|
||||
variable {𝓵 : ℝ}
|
||||
variable (μ2 : ℝ)
|
||||
variable (h𝓵 : 0 < 𝓵)
|
||||
|
||||
include h𝓵
|
||||
/-- The second term of the potential is non-negative. -/
|
||||
lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
simp_all only [normSq, gt_iff_lt, mul_nonneg_iff_of_pos_left, ge_iff_le, norm_nonneg, pow_nonneg,
|
||||
and_self]
|
||||
|
||||
omit h𝓵
|
||||
lemma as_quad (μ2 𝓵 : ℝ) (φ : HiggsField) (x : SpaceTime) :
|
||||
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
|
||||
simp only [normSq, neg_mul, potential, neg_add_rev, neg_neg]
|
||||
ring
|
||||
|
||||
include h𝓵
|
||||
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
|
||||
lemma discrim_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||||
lemma discrim_nonneg (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact sq_nonneg (2 * 𝓵 * ‖φ‖_H ^ 2 x+ - μ2)
|
||||
· exact ne_of_gt h𝓵
|
||||
exact sq_nonneg (2 * 𝓵 * ‖φ‖_H ^ 2 x + - μ2)
|
||||
· exact h
|
||||
|
||||
lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
|
||||
lemma discrim_eq_sqrt_discrim_mul_self (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = Real.sqrt (discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x)) *
|
||||
Real.sqrt (discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x)) := by
|
||||
refine Eq.symm (Real.mul_self_sqrt ?h)
|
||||
exact discrim_nonneg μ2 h φ x
|
||||
|
||||
lemma eq_zero_at (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = 0) : φ x = 0 ∨ ‖φ‖_H ^ 2 x = μ2 / 𝓵 := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [hV] at h1
|
||||
|
@ -124,9 +96,191 @@ lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
|
|||
ring_nf
|
||||
linear_combination h2
|
||||
|
||||
/-- When `0 < 𝓵`, the potential has a lower bound. -/
|
||||
lemma bounded_below (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 0 < 𝓵) (φ : HiggsField) (x : SpaceTime) :
|
||||
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
|
||||
have h1 := discrim_nonneg μ2 (ne_of_lt h𝓵).symm φ x
|
||||
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (4 * 𝓵) * potential μ2 𝓵 φ x by ring] at h1
|
||||
have h2 := (div_le_iff₀' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
/-- When `𝓵 < 0`, the potential has an upper bound. -/
|
||||
lemma bounded_above (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x ≤ - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
have h1 := discrim_nonneg μ2 (ne_of_lt h𝓵) φ x
|
||||
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (- 4 * 𝓵) * (- potential μ2 𝓵 φ x) by ring] at h1
|
||||
have h2 := le_neg_of_le_neg <| (div_le_iff₀' (by linarith : 0 < - 4 * 𝓵)).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
lemma discrim_eq_zero_of_eq_bound (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
|
||||
rw [discrim, hV]
|
||||
field_simp
|
||||
|
||||
lemma discrim_ge_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (c : ℝ) :
|
||||
0 ≤ discrim 𝓵 (- μ2) (- c) ↔ c ≤ - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
rw [discrim]
|
||||
simp only [even_two, Even.neg_pow, mul_neg, sub_neg_eq_add]
|
||||
rw [← neg_le_iff_add_nonneg', show 4 * 𝓵 * c = (- 4 * 𝓵) * (- c) by ring,
|
||||
← (div_le_iff₀' (by linarith : 0 < - 4 * 𝓵)), le_neg]
|
||||
ring_nf
|
||||
|
||||
example (a b c : ℝ ) (hc : c < 0) : a ≤ b / c ↔ b ≤ c * a := by
|
||||
exact le_div_iff_of_neg' hc
|
||||
lemma pot_le_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
(0 < μ2 ∧ potential μ2 𝓵 φ x ≤ 0) ∨ μ2 ≤ 0 := by
|
||||
by_cases hμ2 : μ2 ≤ 0
|
||||
· simp [hμ2]
|
||||
simp [potential, hμ2]
|
||||
apply And.intro (lt_of_not_ge hμ2)
|
||||
have h1 : 0 ≤ μ2 * ‖φ x‖ ^ 2 := by
|
||||
refine Left.mul_nonneg ?ha ?hb
|
||||
· exact le_of_not_ge hμ2
|
||||
· exact sq_nonneg ‖φ x‖
|
||||
refine le_trans ?_ h1
|
||||
exact mul_nonpos_of_nonpos_of_nonneg (mul_nonpos_of_nonpos_of_nonneg (le_of_lt h)
|
||||
(sq_nonneg ‖φ x‖)) (sq_nonneg ‖φ x‖)
|
||||
|
||||
lemma exist_sol_iff_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (c : ℝ) :
|
||||
(∃ φ x, potential μ2 𝓵 φ x = c) ↔ (0 < μ2 ∧ c ≤ 0) ∨
|
||||
(μ2 ≤ 0 ∧ c ≤ - μ2 ^ 2 / (4 * 𝓵)) := by
|
||||
refine Iff.intro (fun ⟨φ, x, hV⟩ => ?_) (fun h => ?_)
|
||||
· rcases pot_le_zero_of_neg_𝓵 μ2 h𝓵 φ x with hr | hr
|
||||
· rw [← hV]
|
||||
exact Or.inl hr
|
||||
· rw [← hV]
|
||||
exact Or.inr (And.intro hr (bounded_above μ2 h𝓵 φ x))
|
||||
· simp only [potential, neg_mul]
|
||||
simp only [← sub_eq_zero, sub_zero]
|
||||
ring_nf
|
||||
let a := (μ2 - Real.sqrt (discrim 𝓵 (- μ2) (- c))) / (2 * 𝓵)
|
||||
have ha : 0 ≤ a := by
|
||||
simp [a, discrim]
|
||||
rw [div_nonneg_iff]
|
||||
refine Or.inr (And.intro ?_ ?_)
|
||||
· rw [sub_nonpos]
|
||||
by_cases hμ : μ2 < 0
|
||||
· have h1 : 0 ≤ √(μ2 ^ 2 + 4 * 𝓵 * c) := Real.sqrt_nonneg (μ2 ^ 2 + 4 * 𝓵 * c)
|
||||
linarith
|
||||
· refine Real.le_sqrt_of_sq_le ?_
|
||||
rw [le_add_iff_nonneg_right]
|
||||
refine mul_nonneg_of_nonpos_of_nonpos ?_ ?_
|
||||
· refine mul_nonpos_of_nonneg_of_nonpos ?_ ?_
|
||||
· linarith
|
||||
· linarith
|
||||
· rcases h with h | h
|
||||
· linarith
|
||||
· have h1 : μ2 = 0 := by linarith
|
||||
rw [h1] at h
|
||||
simpa using h.2
|
||||
· linarith
|
||||
use (ofReal a)
|
||||
use 0
|
||||
rw [ofReal_normSq ha]
|
||||
trans 𝓵 * a * a + (- μ2) * a + (- c)
|
||||
· ring
|
||||
have hd : 0 ≤ (discrim 𝓵 (-μ2) (-c)) := by
|
||||
simp [discrim]
|
||||
rcases h with h | h
|
||||
· refine Left.add_nonneg (sq_nonneg μ2) ?_
|
||||
refine mul_nonneg_of_nonpos_of_nonpos ?_ h.2
|
||||
linarith
|
||||
· rw [← @neg_le_iff_add_nonneg']
|
||||
rw [← le_div_iff_of_neg']
|
||||
· exact h.2
|
||||
· linarith
|
||||
have hdd : discrim 𝓵 (-μ2) (-c) = Real.sqrt (discrim 𝓵 (-μ2) (-c)) * Real.sqrt (discrim 𝓵 (-μ2) (-c)) := by
|
||||
exact (Real.mul_self_sqrt hd).symm
|
||||
refine (quadratic_eq_zero_iff (ne_of_gt h𝓵).symm hdd _).mpr ?_
|
||||
simp only [neg_neg, or_true, a]
|
||||
|
||||
/-!
|
||||
|
||||
## Boundness of the potential
|
||||
|
||||
-/
|
||||
|
||||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||||
def IsBounded (μ2 𝓵 : ℝ) : Prop :=
|
||||
∃ c, ∀ Φ x, c ≤ potential μ2 𝓵 Φ x
|
||||
|
||||
lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
||||
0 ≤ 𝓵 := by
|
||||
by_contra hl
|
||||
simp at hl
|
||||
obtain ⟨c, hc⟩ := h
|
||||
by_cases hμ : μ2 ≤ 0
|
||||
· by_cases hcz : c ≤ -μ2 ^ 2 / (4 * 𝓵)
|
||||
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = c - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl (c - 1))]
|
||||
apply Or.inr
|
||||
simp_all
|
||||
linarith
|
||||
obtain ⟨φ, x, hφ⟩ := hcm1
|
||||
have hc2 := hc φ x
|
||||
rw [hφ] at hc2
|
||||
linarith
|
||||
· simp at hcz
|
||||
have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = -μ2 ^ 2 / (4 * 𝓵) - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl _)]
|
||||
apply Or.inr
|
||||
simp_all
|
||||
obtain ⟨φ, x, hφ⟩ := hcm1
|
||||
have hc2 := hc φ x
|
||||
rw [hφ] at hc2
|
||||
linarith
|
||||
· simp at hμ
|
||||
by_cases hcz : c ≤ 0
|
||||
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = c - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl (c - 1))]
|
||||
apply Or.inl
|
||||
simp_all
|
||||
linarith
|
||||
obtain ⟨φ, x, hφ⟩ := hcm1
|
||||
have hc2 := hc φ x
|
||||
rw [hφ] at hc2
|
||||
linarith
|
||||
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = 0 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl 0)]
|
||||
apply Or.inl
|
||||
simp_all
|
||||
obtain ⟨φ, x, hφ⟩ := hcm1
|
||||
have hc2 := hc φ x
|
||||
rw [hφ] at hc2
|
||||
linarith
|
||||
|
||||
|
||||
|
||||
section lowerBound
|
||||
/-!
|
||||
|
||||
## Lower bound on potential
|
||||
|
||||
-/
|
||||
|
||||
variable (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 0 < 𝓵)
|
||||
|
||||
include h𝓵
|
||||
/-- The second term of the potential is non-negative. -/
|
||||
lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
simp_all only [normSq, gt_iff_lt, mul_nonneg_iff_of_pos_left, ge_iff_le, norm_nonneg, pow_nonneg,
|
||||
and_self]
|
||||
|
||||
lemma eq_zero_at_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0)
|
||||
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
|
||||
cases' (eq_zero_at μ2 h𝓵 φ x hV) with h1 h1
|
||||
cases' (eq_zero_at μ2 (ne_of_lt h𝓵).symm φ x hV) with h1 h1
|
||||
· exact h1
|
||||
· by_cases hμSqZ : μ2 = 0
|
||||
· simpa [hμSqZ] using h1
|
||||
|
@ -137,17 +291,6 @@ lemma eq_zero_at_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0)
|
|||
· rw [← h1]
|
||||
exact normSq_nonneg φ x
|
||||
|
||||
lemma bounded_below (φ : HiggsField) (x : SpaceTime) :
|
||||
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
|
||||
have h1 := discrim_nonneg μ2 h𝓵 φ x
|
||||
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (4 * 𝓵) * potential μ2 𝓵 φ x by ring] at h1
|
||||
have h2 := (div_le_iff₀' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
lemma bounded_below_of_μSq_nonpos {μ2 : ℝ}
|
||||
(hμSq : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) : 0 ≤ potential μ2 𝓵 φ x := by
|
||||
refine add_nonneg ?_ (snd_term_nonneg h𝓵 φ x)
|
||||
|
@ -167,12 +310,6 @@ variable (h𝓵 : 0 < 𝓵)
|
|||
|
||||
-/
|
||||
|
||||
include h𝓵
|
||||
lemma discrim_eq_zero_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
|
||||
rw [discrim, hV]
|
||||
field_simp
|
||||
|
||||
include h𝓵
|
||||
lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
|
@ -180,7 +317,7 @@ lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
|||
‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
(discrim_eq_zero_of_eq_bound μ2 h𝓵 φ x hV)] at h1
|
||||
(discrim_eq_zero_of_eq_bound μ2 (ne_of_lt h𝓵).symm φ x hV)] at h1
|
||||
· simp_rw [h1, neg_neg]
|
||||
· exact ne_of_gt h𝓵
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue