feat: bounded properties of Higgs potential

This commit is contained in:
jstoobysmith 2024-09-05 18:21:43 -04:00
parent 0dd6f7390e
commit 27721bc476
4 changed files with 249 additions and 57 deletions

View file

@ -22,6 +22,7 @@ open HiggsField
noncomputable section
/-! TODO: Make the potential a structure. -/
/-- The potential of the two Higgs doublet model. -/
def potential (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : )
(m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ) (Φ1 Φ2 : HiggsField) (x : SpaceTime) : :=
@ -88,6 +89,40 @@ lemma left_zero : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m
def IsBounded (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ) (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ) : Prop :=
∃ c, ∀ Φ1 Φ2 x, c ≤ potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ2 x
lemma isBounded_right_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
StandardModel.HiggsField.potential.IsBounded (- m₁₁2) (𝓵₁/2) := by
obtain ⟨c, hc⟩ := h
use c
intro Φ x
have hc1 := hc Φ 0 x
rw [right_zero] at hc1
exact hc1
lemma isBounded_left_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
StandardModel.HiggsField.potential.IsBounded (- m₂₂2) (𝓵₂/2) := by
obtain ⟨c, hc⟩ := h
use c
intro Φ x
have hc1 := hc 0 Φ x
rw [left_zero] at hc1
exact hc1
lemma isBounded_𝓵₁_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
0 ≤ 𝓵₁ := by
have h1 := isBounded_right_zero h
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
linarith
lemma isBounded_𝓵₂_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
0 ≤ 𝓵₂ := by
have h1 := isBounded_left_zero h
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
linarith
/-! TODO: Show that if the potential is bounded then `0 ≤ 𝓵₁` and `0 ≤ 𝓵₂`. -/
/-!