feat: bounded properties of Higgs potential
This commit is contained in:
parent
0dd6f7390e
commit
27721bc476
4 changed files with 249 additions and 57 deletions
|
@ -22,6 +22,7 @@ open HiggsField
|
|||
|
||||
noncomputable section
|
||||
|
||||
/-! TODO: Make the potential a structure. -/
|
||||
/-- The potential of the two Higgs doublet model. -/
|
||||
def potential (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ)
|
||||
(m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) (Φ1 Φ2 : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
|
@ -88,6 +89,40 @@ lemma left_zero : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m
|
|||
def IsBounded (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ) (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) : Prop :=
|
||||
∃ c, ∀ Φ1 Φ2 x, c ≤ potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ2 x
|
||||
|
||||
lemma isBounded_right_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
StandardModel.HiggsField.potential.IsBounded (- m₁₁2) (𝓵₁/2) := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
use c
|
||||
intro Φ x
|
||||
have hc1 := hc Φ 0 x
|
||||
rw [right_zero] at hc1
|
||||
exact hc1
|
||||
|
||||
lemma isBounded_left_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
StandardModel.HiggsField.potential.IsBounded (- m₂₂2) (𝓵₂/2) := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
use c
|
||||
intro Φ x
|
||||
have hc1 := hc 0 Φ x
|
||||
rw [left_zero] at hc1
|
||||
exact hc1
|
||||
|
||||
lemma isBounded_𝓵₁_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
0 ≤ 𝓵₁ := by
|
||||
have h1 := isBounded_right_zero h
|
||||
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
linarith
|
||||
|
||||
lemma isBounded_𝓵₂_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ} {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ}
|
||||
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
|
||||
0 ≤ 𝓵₂ := by
|
||||
have h1 := isBounded_left_zero h
|
||||
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
linarith
|
||||
|
||||
/-! TODO: Show that if the potential is bounded then `0 ≤ 𝓵₁` and `0 ≤ 𝓵₂`. -/
|
||||
/-!
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue